【題目】設函數(shù)f(x)=ax2+lnx.
(Ⅰ)當a=﹣1時,求函數(shù)y=f(x)的圖象在點(1,f(1))處的切線方程;
(Ⅱ)已知a<0,若函數(shù)y=f(x)的圖象總在直線y=-的下方,求a的取值范圍;
(Ⅲ)記f′(x)為函數(shù)f(x)的導函數(shù).若a=1,試問:在區(qū)間[1,10]上是否存在k(k<100)個正數(shù)x1 , x2 , x3…xk , 使得f′(x1)+f′(x2)+f′(x3)+…+f′(xk)≥2012成立?請證明你的結論.
【答案】解:(Ⅰ)當a=﹣1時,f(x)=﹣x2+lnx,,f′(1)=﹣1,
所以切線的斜率為﹣1.
又f(1)=﹣1,所以切點為(1,﹣1).
故所求的切線方程為:y+1=﹣(x﹣1)即x+y=0.
(Ⅱ),x>0,a<0.
令f′(x)=0,則x=.
當x(0,
)時,f′(x)>0;當x
(
,+
)時,f′(x)<0.
故x=為函數(shù)f(x)的唯一極大值點,
所以f(x)的最大值為f()=-
.
由題意有,解得a
.
所以a的取值范圍為(-,-
)
(Ⅲ)當a=1時,.記g(x)=f′(x),其中x∈[1,10].
∵當x∈[1,10]時,,∴y=g(x)在[1,10]上為增函數(shù),
即y=f′(x)在[1,10]上為增函數(shù)
又,
所以,對任意的x∈[1,10],總有.
所以f'(x1)+f'(x2)+f'(x3)+…+f'(xk)≤,
又因為k<100,所以.
故在區(qū)間[1,10]上不存在使得f'(x1)+f'(x2)+f'(x3)+…+f'(xk)≥2012成立的k(k<100)個正數(shù)x1 , x2 , x3…xk .
【解析】(Ⅰ)當a=﹣1時, , f′(1)=﹣1,由此能求出函數(shù)y=f(x)的圖象在點(1,f(1))處的切線方程.
(Ⅱ) , x>0,a<0.令f′(x)=0,則x=
. 由此能求出a的取值范圍.
(Ⅲ)當a=1時, . 記g(x)=f′(x),其中x∈[1,10].由此入手能夠推導出在區(qū)間[1,10]上不存在使得f'(x1)+f'(x2)+f'(x3)+…+f'(xk)≥2012成立的k(k<100)個正數(shù)x1 , x2 , x3…xk .
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}前n項和Sn滿足Sn+1=a2Sn+a1 , 其中a2≠0.
(Ⅰ)求證數(shù)列{an}是首項為1的等比數(shù)列;
(Ⅱ)當a2=2時,是否存在等差數(shù)列{bn},使得a1bn+a2bn﹣1+a3bn﹣2+…+anb1=2n+1﹣n﹣2對一切n∈N*都成立?若存在,求出bn;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線E:﹣
=1(a>0,b>0)的兩條漸近線分別為l1:y=2x,l2:y=﹣2x.
(1)求雙曲線E的離心率;
(2)如圖,O為坐標原點,動直線l分別交直線l1 , l2于A,B兩點(A,B分別在第一、第四象限),且△OAB的面積恒為8,試探究:是否存在總與直線l有且只有一個公共點的雙曲線E?若存在,求出雙曲線E的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有5名男生、2名女生站成一排照相,
(1)兩女生要在兩端,有多少種不同的站法?
(2)兩名女生不相鄰,有多少種不同的站法?
(3)女生甲不在左端,女生乙不在右端,有多少種不同的站法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一段時間內,分5次測得某種商品的價格x(萬元)和需求量y(t)之間的一組數(shù)據為:
1 | 2 | 3 | 4 | 5 | |
價格x | 1.4 | 1.6 | 1.8 | 2 | 2.2 |
需求量y | 12 | 10 | 7 | 5 | 3 |
已知,
(1)畫出散點圖;
(2)求出y對x的線性回歸方程;
(3)如價格定為1.9萬元,預測需求量大約是多少?(精確到0.01 t).
參考公式:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為調查高三年學生的身高情況,按隨機抽樣的方法抽取80名學生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在170~175cm的男生人數(shù)有16人.
(Ⅰ)試問在抽取的學生中,男、女生各有多少人?
(Ⅱ)根據頻率分布直方圖,完成下列的2×2列聯(lián)表,并判斷能有多大(百分幾)的把握認為“身高與性別有關”?
≥170cm | <170cm | 總計 | |
男生身高 | |||
女生身高 | |||
總計 |
(Ⅲ)在上述80名學生中,從身高在170~175cm之間的學生中按男、女性別分層抽樣的方法,抽出5人,從這5人中選派3人當旗手,求3人中恰好有一名女生的概率.
參考公式:K2=
參考數(shù)據:
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的長軸長為4,直線
被橢圓
截得的線段長為
.
(1)求橢圓的標準方程;
(2)過橢圓的右頂點作互相垂直的兩條直線
分別交橢圓
于
兩點(點
不同于橢圓
的右頂點),證明:直線
過定點
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費(單位:萬元)對年銷售量
(單位:噸)和年利潤
(單位:萬元)的影響.對近六年的年宣傳費
和年銷售量
的數(shù)據作了初步統(tǒng)計,得到如下數(shù)據:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年宣傳費 | 38 | 48 | 58 | 68 | 78 | 88 |
年銷售量 | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
經電腦模擬,發(fā)現(xiàn)年宣傳費(萬元)與年銷售量
(噸)之間近似滿足關系式
,即
.對上述數(shù)據作了初步處理,得到相關的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(1)根據所給數(shù)據,求關于
的回歸方程;
(2)規(guī)定當產品的年銷售量(噸)與年宣傳費
(萬元)的比值在區(qū)間
內時認為該年效益良好.該公司某
年投入的宣傳費用(單位:萬元)分別為:
、
、
、
、
、
,試根據回歸方程估計年銷售量,從這
年中任選
年,記其中選到效益良好年的數(shù)量為
,試求隨機變量
的分布列和期望.(其中
為自然對數(shù)的底數(shù),
)
附:對于一組數(shù)據,
,…,
,其回歸直線
中的斜率和截距的最小二乘估計分別為
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國某沙漠,曾被稱為“死亡之!,截止2018年年底該地區(qū)的綠化率只有,計劃從2019年開始使用無人機飛播造林,彈射的種子可以直接打入沙面里頭,實現(xiàn)快速播種,每年原來沙漠面積的
將被改為綠洲,但同時原有綠洲面積的
還會被沙漠化。設該地區(qū)的面積為
,2018年年底綠洲面積為
,經過一年綠洲面積為
……經過
年綠洲面積為
,
(1)求經過年綠洲面積
;
(2)截止到哪一年年底,才能使該地區(qū)綠洲面積超過?(取
)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com