日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中記載了這樣的一個問題:三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細(xì)算相還,其大意為:有一個人走了378里路,第一天健步行走,從第二天起其因腳痛每天走的路程為前一天的一半,走了6天后到達(dá)了目的地,問此人第三天走的路程里數(shù)為(

          A.192B.48C.24D.88

          【答案】B

          【解析】

          根據(jù)題意可知此人行走的里程數(shù)為等比數(shù)列,設(shè)出第一天行走的里程,即可由等比數(shù)列的前n項和公式,求得首項.即可求得第三天行走的路程里數(shù).

          由題意可知此人行走的里程數(shù)為等比數(shù)列

          設(shè)第一天行走的路程為,且等比數(shù)列的公比為

          則由等比數(shù)列的前n項和公式

          代入可得

          解得

          根據(jù)等比數(shù)列的通項公式代入可得

          故選:B

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】北方的冬天戶外冰天雪地,若水管裸露在外,則管內(nèi)的水就會結(jié)冰從而凍裂水管,給用戶生活帶來不便.每年冬天來臨前,工作人員就會給裸露在外的水管保暖:在水管外面包裹保溫帶,用一條保溫帶盤旋而上一次包裹到位.某工作人員采用四層包裹法(除水管兩端外包裹水管的保溫帶都是四層):如圖1所示是相鄰四層保溫帶的下邊緣輪廓線,相鄰兩條輪廓線的間距是帶寬的四分之一.設(shè)水管的直徑與保溫帶的寬度都為4cm.在圖2水管的側(cè)面展開圖中,此保溫帶的輪廓線與水管母線所成的角的余弦值是( )(保溫帶厚度忽略不計)

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中,,,分別為內(nèi)角,,的對邊,且滿.

          1)求的大。

          2)再在①,②,③這三個條件中,選出兩個使唯一確定的條件補(bǔ)充在下面的問題中,并解答問題.________,________,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】冠狀病毒是一個大型病毒家族,己知可引起感冒以及中東呼吸綜合征()和嚴(yán)重急性呼吸綜合征()等較嚴(yán)重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒()是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴(yán)重病例中,感染可導(dǎo)致肺炎、嚴(yán)重急性呼吸綜合征、腎衰竭,甚至死亡.

          某醫(yī)院為篩查冠狀病毒,需要檢驗血液是否為陽性,現(xiàn)有n)份血液樣本,有以下兩種檢驗方式:

          方式一:逐份檢驗,則需要檢驗n.

          方式二:混合檢驗,將其中k)份血液樣本分別取樣混合在一起檢驗.

          若檢驗結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為.

          假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為p.現(xiàn)取其中k)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.

          1)若,試求p關(guān)于k的函數(shù)關(guān)系式;

          2)若p與干擾素計量相關(guān),其中)是不同的正實數(shù),

          滿足)都有成立.

          i)求證:數(shù)列等比數(shù)列;

          ii)當(dāng)時,采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)的期望值更少,求k的最大值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列對這類高階等差數(shù)列的研究,在楊輝之后一般稱為垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項分別為1,4814,2336,54,則該數(shù)列的第19項為( )(注:

          A.1624B.1024C.1198D.1560

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),.

          (1)當(dāng)時,若關(guān)于的不等式恒成立,求的取值范圍;

          (2)當(dāng)時,證明: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)的圖象在點(diǎn)處的切線與直線垂直.

          1)求的單調(diào)區(qū)間;

          2)若當(dāng)時,恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面是菱形,平面平面,且,的中點(diǎn),

          (1)求證:平面;

          (2)求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知平行四邊形中,,,為邊的中點(diǎn),將 沿直線翻折成.為線段的中點(diǎn),則在翻折過程中,有下列三個命題:

          ①線段的長是定值;

          ②存在某個位置,使;

          ③存在某個位置,使平面.

          其中正確的命題有______. (填寫所有正確命題的編號)

          查看答案和解析>>

          同步練習(xí)冊答案