日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M為AB的中點(diǎn).
          (1)證明:CM⊥DE;
          (2)在邊AC上找一點(diǎn)N,使CD∥平面BEN.
          分析:(1)由已知中因?yàn)锽C=AC,M為AB中點(diǎn),我們易得CM⊥AB,又由等邊△ABC與直角梯形ABDE所在平面垂直,可得CM⊥平面ABDE,進(jìn)而根據(jù)線面垂直的性質(zhì),即可證明CM⊥DE;
          (2)連接AD交BE于點(diǎn)K,連接KN,由已知中直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M為AB的中點(diǎn).我們易得KN∥CD,結(jié)合線面平行的判定定理,即可得到答案.
          解答:解:(1)證明:因?yàn)锽C=AC,M為AB中點(diǎn).所以CM⊥AB,
          又因?yàn)槠矫鍭BC⊥平面ABDE,平面ABC∩平面ABDE=AB,CM?平面ABC,
          所以CM⊥平面ABDE,
          又因DE?平面ABDE,所以CM⊥DE;(7分)
          (2)當(dāng)
          AN
          AC
          =
          1
          3
          時(shí),CD∥平面BEN.
          連接AD交BE于點(diǎn)K,連接KN,
          因梯形ABDE中BD∥AE,BD=2AE,
          所以
          AK
          KD
          =
          AE
          BD
          =
          1
          2
          ,則
          AK
          AD
          =
          1
          3

          又因
          AN
          AC
          =
          1
          3
          ,所以KN∥CD(14分)
          又KN?平面BEN,CD?平面BEN,所以CD∥平面BEN.
          點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是直線與平面垂直的性質(zhì)及直線與平面平行的判定,線線垂直可由線面垂直的性質(zhì)推得,直線和平面垂直,這條直線就垂直于平面內(nèi)所有直線,這是尋找線線垂直的重要依據(jù).垂直問題的證明,其一般規(guī)律是“由已知想性質(zhì),由求證想判定”,也就是說,根據(jù)已知條件去思考有關(guān)的性質(zhì)定理;根據(jù)要求證的結(jié)論去思考有關(guān)的判定定理,往往需要將分析與綜合的思路結(jié)合起來.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,AE⊥AB,BC=BD=2AE=2,O為AB的中點(diǎn).
          (1)證明:CO⊥DE;
          (2)求二面角C-DE-A的正切值大。
          (3)求B到平面CDE的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,AE⊥AB,BC=BD=2AE=2,O為AB的中點(diǎn).
          (1)證明:CO⊥DE;
          (2)求二面角C-DE-A的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BDAE,BD=2AE,AE⊥AB,M為AB的中點(diǎn).
          (1)證明:CM⊥DE;
          (2)在邊AC上找一點(diǎn)N,使CD平面BEN.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,AE⊥AB,BC=BD=2AE=2,O為AB的中點(diǎn).

          (Ⅰ)證明:CO⊥DE;

          (Ⅱ)求二面角C—DE—A的大。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案