日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若點(diǎn)P是曲線上任意一點(diǎn),則點(diǎn)P到直線的最小距離是(     )

          A.     B.       C.        D. 

           

          【答案】

          B

          【解析】

          試題分析:點(diǎn)P是曲線上任意一點(diǎn),當(dāng)過(guò)點(diǎn)P的切線和直線平行時(shí),點(diǎn)P到直線的距離最。本的斜率等于-1,令的導(dǎo)數(shù) y′=,故切點(diǎn)為,點(diǎn)到直線的距離等于。故點(diǎn)P到直線的最小距離為

          考點(diǎn):導(dǎo)數(shù)的幾何意義;點(diǎn)到直線的距離公式。

          點(diǎn)評(píng):本題的關(guān)鍵是分析出:當(dāng)曲線上過(guò)點(diǎn)P的切線和直線平行時(shí),點(diǎn)P到直線的距離最小.

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)圓錐曲線上任意兩點(diǎn)連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對(duì)稱軸,我們將該弦稱之為曲線的垂軸弦.已知橢圓C:
          x2
          4
          +y2=1

          (1)過(guò)橢圓C的右焦點(diǎn)作一條垂直于x軸的垂軸弦MN,求MN的長(zhǎng)度;
          (2)若點(diǎn)P是橢圓C上不與頂點(diǎn)重合的任意一點(diǎn),MN是橢圓C的短軸,直線MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0)(如圖),求xE?xF的值;
          (3)在(2)的基礎(chǔ)上,把上述橢圓C一般化為
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          ,MN是任意一條垂直于x軸的垂軸弦,其它條件不變,試探究xE?xF是否為定值?(不需要證明);請(qǐng)你給出雙曲線
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)
          中相類似的結(jié)論,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2007•楊浦區(qū)二模)(文)設(shè)F1、F2分別為橢圓C:
          x2
          m2
          +
          y2
          n2
          =1
          (m>0,n>0且m≠n)的兩個(gè)焦點(diǎn).
          (1)若橢圓C上的點(diǎn)A(1,
          3
          2
          )到兩個(gè)焦點(diǎn)的距離之和等于4,求橢圓C的方程.
          (2)如果點(diǎn)P是(1)中所得橢圓上的任意一點(diǎn),且
          PF1
          PF2
          =0
          ,求△PF1F2的面積.
          (3)若橢圓C具有如下性質(zhì):設(shè)M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),點(diǎn)Q是橢圓上任意一點(diǎn),且直線QM與直線QN的斜率都存在,分別記為KQM、KQN,那么KQM和KQN之積是與點(diǎn)Q位置無(wú)關(guān)的定值.試問(wèn):雙曲線
          x2
          a2
          -
          y2
          b2
          =1
          (a>0,b>0)是否具有類似的性質(zhì)?并證明你的結(jié)論.通過(guò)對(duì)上面問(wèn)題進(jìn)一步研究,請(qǐng)你概括具有上述性質(zhì)的二次曲線更為一般的結(jié)論,并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (08年龍巖一中模擬)(12分)已知、是雙曲線的左、右焦點(diǎn),點(diǎn)是曲線上任意一點(diǎn),且.

          (I)求曲線的方程;

          (II)過(guò)作一直線交曲線兩點(diǎn),若,求面積最大時(shí)直線的方程.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (08年龍巖一中模擬)(12分)已知是雙曲線的左、右焦點(diǎn),點(diǎn)是曲線上任意一點(diǎn),且.

          (I)求曲線的方程;

          (II)過(guò)作一直線交曲線、兩點(diǎn),若,求面積最大時(shí)直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:楊浦區(qū)二模 題型:解答題

          (文)設(shè)F1、F2分別為橢圓C:
          x2
          m2
          +
          y2
          n2
          =1
          (m>0,n>0且m≠n)的兩個(gè)焦點(diǎn).
          (1)若橢圓C上的點(diǎn)A(1,
          3
          2
          )到兩個(gè)焦點(diǎn)的距離之和等于4,求橢圓C的方程.
          (2)如果點(diǎn)P是(1)中所得橢圓上的任意一點(diǎn),且
          PF1
          PF2
          =0
          ,求△PF1F2的面積.
          (3)若橢圓C具有如下性質(zhì):設(shè)M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),點(diǎn)Q是橢圓上任意一點(diǎn),且直線QM與直線QN的斜率都存在,分別記為KQM、KQN,那么KQM和KQN之積是與點(diǎn)Q位置無(wú)關(guān)的定值.試問(wèn):雙曲線
          x2
          a2
          -
          y2
          b2
          =1
          (a>0,b>0)是否具有類似的性質(zhì)?并證明你的結(jié)論.通過(guò)對(duì)上面問(wèn)題進(jìn)一步研究,請(qǐng)你概括具有上述性質(zhì)的二次曲線更為一般的結(jié)論,并說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案