日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知等差數(shù)列{an}的前n項的和記為Sn.如果a4=-12,a8=-4.
          (Ⅰ)求數(shù)列{an}的通項公式;
          (Ⅱ)求Sn的最小值及其相應的n的值;
          (Ⅲ)從數(shù)列{an}中依次取出a1,a2,a4,a8,…,a2n-1,…,構成一個新的數(shù)列{bn},求{bn}的前n項和.
          分析:(Ⅰ)可設等差數(shù)列{an}的公差為d,由a4=-12,a8=-4,可解得其首項與公差,從而可求得數(shù)列{an}的通項公式;
          (Ⅱ)得到數(shù)列{an}的通項公式an=2n-20,可由
          an≤0
          an+1≥0
          求得n取何值時Sn取得最小值,然后由求和公式可求得答案;
          (Ⅲ)根據(jù)題意求得bn=a2n-1=-18+(2n-1-1)×2=2n-20,利用分組求和法可求得數(shù)列{bn}的前n項和為Tn
          解答:解:(Ⅰ)設公差為d,由題意,可得
          a4=-12
          a8=-4
          ?
          a1+3d=-12
          a1+7d=-4
          ,解得
          d=2
          a1=-18
          ,
          ∴an=2n-20…(3分)
          (Ⅱ)由數(shù)列{an}的通項公式an=2n-20得:
          當n≤9時,an<0,
          當n=10時,an=0,
          當n≥11時,an>0.
          ∴當n=9或n=10時,Sn取得最小值,又Sn=
          [-18+(2n-20)]•n
          2
          =(n-19)•n
          ∴S9=S10=-90…(6分)
          (Ⅲ)記數(shù)列{bn}的前n項和為Tn,由題意可知bn=a2n-1=-18+(2n-1-1)×2=2n-20,
          ∴Tn=b1+b2+b3+…+bn=(21-20)+(22-20)+(23-20)+…+(2n-20)
          =(21+22+23+…+2n)-20n=
          2-2n+1
          1-2
          -20n

          =2n+1-20n-2…(12分)
          點評:本題考查等差數(shù)列的通項公式,及數(shù)列求和公式,本題解答中的亮點在于利用等差數(shù)列的通項公式分析Sn的最值,顯然比利用其求和公式,通過二次函數(shù)的配方法求最值方便的多.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
          (1)求數(shù)列{an}的通項公式;
          (2)設數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項和Sn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
          (1)求{an}的通項公式;
          (2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項和Sn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
          (1)求數(shù)列{an}的通項公式;     
          (2)求數(shù)列{|an|}的前n項和;
          (3)求數(shù)列{
          an2n-1
          }的前n項和.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
          (Ⅰ)求數(shù)列{an}的通項公式;
          (Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

          查看答案和解析>>

          同步練習冊答案