【題目】明初出現(xiàn)了一大批杰出的騎兵將領(lǐng),比如徐達(dá)、常遇春、李文忠、藍(lán)玉和朱棣.明初騎兵軍團(tuán)擊敗了不可一世的蒙古騎兵,是當(dāng)時(shí)世界上最強(qiáng)騎兵軍團(tuán).假設(shè)在明軍與元軍的某次戰(zhàn)役中,明軍有8位將領(lǐng),善用騎兵的將領(lǐng)有5人;元軍有8位將領(lǐng),善用騎兵的有4人.
(1)現(xiàn)從明軍將領(lǐng)中隨機(jī)選取4名將領(lǐng),求至多有3名是善用騎兵的將領(lǐng)的概率;
(2)在明軍和元軍的將領(lǐng)中各隨機(jī)選取2人,為善用騎兵的將領(lǐng)的人數(shù),寫出
的分布列,并求
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱柱中,
底面
,
,
,
,
.
,
分別為棱
,
的中點(diǎn).
(1)求異面直線與
所成角的大;
(2)若為線段
的中點(diǎn),試在圖中作出過
、
、
三點(diǎn)的平面截該棱柱所得的多邊形,并求出以該多邊形為底,
為頂點(diǎn)的棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,,
,
,四邊形ABEF是正方形.將正方形ABEF沿AB折起到四邊形
的位置,使平面
平面ABCD,M為
的中點(diǎn),如圖2.
圖1圖2
(1)求證:;
(2)求平面與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若無窮數(shù)列滿足
是公比為
的等比數(shù)列,則稱數(shù)列
為“
數(shù)列”.設(shè)數(shù)列
中
(1)若,且數(shù)列
是“
數(shù)列”,求數(shù)列
的通項(xiàng)公式;
(2)設(shè)數(shù)列的前
項(xiàng)和為
,且
,請判斷數(shù)列
是否為“
數(shù)列”,并說明理由;
(3)若數(shù)列是“
數(shù)列”,是否存在正整數(shù)
,使得
?若存在,請求出所有滿足條件的正整數(shù)
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過橢圓
的右焦點(diǎn)
,拋物線
的焦點(diǎn)為橢圓
的上頂點(diǎn),且
交橢圓
于
兩點(diǎn),點(diǎn)
在直線
上的射影依次為
.
(1)求橢圓的方程;
(2)若直線交
軸于點(diǎn)
,且
,當(dāng)
變化時(shí),證明:
為定值;
(3)當(dāng)變化時(shí),直線
與
是否相交于定點(diǎn)?若是,請求出定點(diǎn)的坐標(biāo),并給予證明;否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,
是過點(diǎn)P(1,1),傾斜角為
的直線,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為
.
(1)寫出直線的參數(shù)方程及曲線C的直角坐標(biāo)方程;
(2)直線L與曲線C交于AB兩點(diǎn),若弦AB被點(diǎn)P平分時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在上的函數(shù)
,
.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,
,
滿足
,則稱
比
更接近
.當(dāng)
且
時(shí),試比較
和
哪個更接近
,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前
項(xiàng)和
,已知
,
.
(1)求證:數(shù)列為等差數(shù)列,并求出其通項(xiàng)公式;
(2)設(shè),又
對一切
恒成立,求實(shí)數(shù)
的取值范圍;
(3)已知為正整數(shù)且
,數(shù)列
共有
項(xiàng),設(shè)
,又
,求
的所有可能取值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com