日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】明初出現(xiàn)了一大批杰出的騎兵將領(lǐng),比如徐達(dá)、常遇春、李文忠、藍(lán)玉和朱棣.明初騎兵軍團(tuán)擊敗了不可一世的蒙古騎兵,是當(dāng)時(shí)世界上最強(qiáng)騎兵軍團(tuán).假設(shè)在明軍與元軍的某次戰(zhàn)役中,明軍有8位將領(lǐng),善用騎兵的將領(lǐng)有5人;元軍有8位將領(lǐng),善用騎兵的有4人.

          1)現(xiàn)從明軍將領(lǐng)中隨機(jī)選取4名將領(lǐng),求至多有3名是善用騎兵的將領(lǐng)的概率;

          2)在明軍和元軍的將領(lǐng)中各隨機(jī)選取2人,為善用騎兵的將領(lǐng)的人數(shù),寫出的分布列,并求.

          【答案】(1)

          (2)分布列見解析,

          【解析】

          1)由概率運(yùn)算公式及對立事件的概率的求法求解即可;

          2)由題意有隨機(jī)數(shù),再求出對應(yīng)的概率,然后求出分布列,期望即可.

          解:(1)設(shè)從明軍將領(lǐng)中隨機(jī)選取4名將領(lǐng),則有4名是善用騎兵的將領(lǐng)的概率為,

          故從明軍將領(lǐng)中隨機(jī)選取4名將領(lǐng),至多有3名是善用騎兵的將領(lǐng)的概率為.

          2)由題意知,,

          ,

          ,

          ,

          ,

          所以的分布列為

          0

          1

          2

          3

          4

          .

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知三棱柱中,底面,,,,.分別為棱,的中點(diǎn).

          1)求異面直線所成角的大;

          2)若為線段的中點(diǎn),試在圖中作出過、、三點(diǎn)的平面截該棱柱所得的多邊形,并求出以該多邊形為底,為頂點(diǎn)的棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在直角梯形ABCD中,,,四邊形ABEF是正方形.將正方形ABEF沿AB折起到四邊形的位置,使平面平面ABCD,M的中點(diǎn),如圖2.

          12

          (1)求證:;

          (2)求平面與平面所成銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義:若無窮數(shù)列滿足是公比為的等比數(shù)列,則稱數(shù)列為“數(shù)列”.設(shè)數(shù)列

          1)若,且數(shù)列是“數(shù)列”,求數(shù)列的通項(xiàng)公式;

          2)設(shè)數(shù)列的前項(xiàng)和為,且,請判斷數(shù)列是否為“數(shù)列”,并說明理由;

          3)若數(shù)列是“數(shù)列”,是否存在正整數(shù),使得?若存在,請求出所有滿足條件的正整數(shù);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線過橢圓的右焦點(diǎn),拋物線的焦點(diǎn)為橢圓的上頂點(diǎn),且交橢圓兩點(diǎn),點(diǎn)在直線上的射影依次為.

          (1)求橢圓的方程;

          (2)若直線軸于點(diǎn),且,當(dāng)變化時(shí),證明: 為定值;

          (3)當(dāng)變化時(shí),直線是否相交于定點(diǎn)?若是,請求出定點(diǎn)的坐標(biāo),并給予證明;否則,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐的底面是正方形,平面,.

          1)證明:平面;

          2)若,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,是過點(diǎn)P(1,1),傾斜角為的直線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.

          (1)寫出直線的參數(shù)方程及曲線C的直角坐標(biāo)方程;

          (2)直線L與曲線C交于AB兩點(diǎn),若弦AB被點(diǎn)P平分時(shí),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若定義在上的函數(shù),.

          (1)求函數(shù)的單調(diào)區(qū)間;

          2)若,,滿足,則稱更接近.當(dāng)時(shí),試比較哪個更接近,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)數(shù)列的前項(xiàng)和,已知,.

          1)求證:數(shù)列為等差數(shù)列,并求出其通項(xiàng)公式;

          2)設(shè),又對一切恒成立,求實(shí)數(shù)的取值范圍;

          3)已知為正整數(shù)且,數(shù)列共有項(xiàng),設(shè),又,求的所有可能取值.

          查看答案和解析>>

          同步練習(xí)冊答案