日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分16分)

          橢圓C的中心為坐標原點O,焦點在y軸上,離心率e = ,橢圓上的點到焦點的最短距離為1-, 直線ly軸交于點P(0,m),與橢圓C交于相異兩點A、B,且

          (1)求橢圓方程;

          (2)若,求m的取值范圍.

          (1)設(shè)C:+=1(a>b>0),設(shè)c>0,c2a2b2,由條件知a-c=,=,

          a=1,bc=,故C的方程為:y2+=1                   5′

          (2)由=λ,

          λ+1=4,λ=3 或O點與P點重合=              7′

          當O點與P點重合=時,m=0

          λ=3時,直線l與y軸相交,則斜率存在。

          設(shè)l與橢圓C交點為Ax1,y1),Bx2,y2

          得(k2+2)x2+2kmx+(m2-1)=0

          Δ=(2km2-4(k2+2)(m2-1)=4(k2-2m2+2)>0 (*)

          x1x2=, x1x2=                           11′

          ∵=3 ∴-x1=3x2

          消去x2,得3(x1x22+4x1x2=0,∴3()2+4=0

          整理得4k2m2+2m2k2-2=0                          13′

          m2=時,上式不成立;m2≠時,k2=,

          λ=3 ∴k≠0 ∴k2=>0,∴-1<m<- 或 <m<1

          容易驗證k2>2m2-2成立,所以(*)成立

          即所求m的取值范圍為(-1,-)∪(,1)∪{0}                 16′

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          本題滿分16分)兩個數(shù)列{an},{bn},滿足bn=
          a1+2a2+3a3+…+nan
          1+2+3+…+n
          .★(參考公式1+22+32+…+n2=
          n(n+1)(2n+1)
          6

          求證:{bn}為等差數(shù)列的充要條件是{an}為等差數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (本題滿分16分)本題共有2個小題,第1小題滿分8分,第2小題滿分8分.

          已知函數(shù),是常數(shù),且),對定義域內(nèi)任意、),恒有成立.

          (1)求函數(shù)的解析式,并寫出函數(shù)的定義域;

          (2)求的取值范圍,使得

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (本題滿分16分)已知數(shù)列的前項和為,且.數(shù)列中,,

           .(1)求數(shù)列的通項公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項公式;(3)求證:①;②

          查看答案和解析>>

          科目:高中數(shù)學 來源:江蘇省私立無錫光華學校2009—2010學年高二第二學期期末考試 題型:解答題

          本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學卷(文) 題型:解答題

          (本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)

          已知函數(shù)

          (1)判斷并證明上的單調(diào)性;

          (2)若存在,使,則稱為函數(shù)的不動點,現(xiàn)已知該函數(shù)有且僅有一個不動點,求的值;

          (3)若上恒成立 , 求的取值范圍.

           

          查看答案和解析>>

          同步練習冊答案