【題目】已知點,圓
.
(1)若直線l過且被圓C截得的弦長為
,求直線l的方程;
(2)點,
,點Q是圓C上的任意一點,求
面積的最小值.
科目:高中數學 來源: 題型:
【題目】如圖,、
是兩個小區(qū)所在地,
、
到一條公路
的垂直距離分別為
,
,
兩端之間的距離為
.
(1)某移動公司將在之間找一點
,在
處建造一個信號塔,使得
對
、
的張角與
對
、
的張角相等,試確定點
的位置.
(2)環(huán)保部門將在之間找一點
,在
處建造一個垃圾處理廠,使得
對
、
所張角最大,試確定點
的位置.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的上頂點為點
,右焦點為
.延長
交橢圓
于點
,且滿足
.
(1)試求橢圓的標準方程;
(2)過點作與
軸不重合的直線
和橢圓
交于
兩點,設橢圓
的左頂點為點
,且直線
分別與直線
交于
兩點,記直線
的斜率分別為
,則
與
之積是否為定值?若是,求出該定值;若不是,試說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓經過點
,
,且圓心在直線
上.
(1)求圓的方程;
(2)過點的直線與圓
交于
兩點,問在直線
上是否存在定點
,使得
恒成立?若存在,請求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在多面體ABCPE中,平面PAC⊥平面ABC,AC⊥BC,PE∥BC,2PE=BC,M是線段AE的中點,N是線段PA上一點,且滿足AN=AP(0<
<1).
(Ⅰ)若,求證:MN⊥PC;
(Ⅱ)是否存在,使得三棱錐M-ACN與三棱錐B-ACP的體積比為1:12?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】市政府招商引資,為吸引外商,決定第一個月產品免稅,某外資廠該第一個月A型產品出廠價為每件10元,月銷售量為6萬件;第二個月,當地政府開始對該商品征收稅率為 ,即銷售1元要征收
元)的稅收,于是該產品的出廠價就上升到每件
元,預計月銷售量將減少p萬件.
(1)將第二個月政府對該商品征收的稅收y(萬元)表示成p的函數,并指出這個函數的定義域;
(2)要使第二個月該廠的稅收不少于1萬元,則p的范圍是多少?
(3)在第(2)問的前提下,要讓廠家本月獲得最大銷售金額,則p應為多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com