日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)(x)=xlnx,g(x)=ax3-.

          ()求函數(shù)(x)的單調(diào)遞增區(qū)間和最小值;

          ()若函數(shù)y= (x)與函數(shù)y =g(x)的圖象在交點處存在公共切線,求實數(shù)a的值。

          【答案】(Ⅰ) 見解析;(Ⅱ)a=.

          【解析】試題分析:(Ⅰ)求出的導(dǎo)數(shù),求得單調(diào)區(qū)間和極值,即可得最小值;(Ⅱ)設(shè)函數(shù)與函數(shù)的圖象在交點處存在公共切線,則根據(jù)切線的斜率相等以及交點在兩個函數(shù)的圖象上可得,列出方程組,結(jié)合(),即可求出實數(shù)的值.

          試題解析:(Ⅰ)

          ,

          ∴當(dāng);當(dāng),.

          ∴函數(shù)上單調(diào)遞減,上單調(diào)遞增.

          ∴所求函數(shù)的單調(diào)遞增區(qū)間為,最小值為.

          (Ⅱ) 設(shè)函數(shù)與函數(shù)的圖象在交點處存在公共切線,則根據(jù)切線的斜率相等以及交點在兩個函數(shù)的圖象上可得, (*),變形得.

          ,化簡得

          是方程的一個實數(shù)解.

          又∵由(Ⅰ)易知方程有唯一的實數(shù)解,且該解為

          將之代入

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓 過圓上任意一點軸引垂線垂足為(點、可重合),點的中點.

          (1)求的軌跡方程;

          (2)若點的軌跡方程為曲線,不過原點的直線與曲線交于、兩點,滿足直線, 的斜率依次成等比數(shù)列,求面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖在多面體中,四邊形是邊長為的正方形, 為等腰梯形,且 , .

          (1)證明:平面平面;

          (2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】4月23日是“世界讀書日”,某中學(xué)在此期間開展了一系列的讀書教育活動,為了解本校學(xué)生課外閱讀情況,學(xué)校隨機抽取了100名學(xué)生對其課外閱讀時間進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時間(單位:min)的頻率分布直方圖,若將日均課外閱讀時間不低于60 min的學(xué)生稱為“書蟲”,低于60 min的學(xué)生稱為“懶蟲”,

          (1)求x的值并估計全校3 000名學(xué)生中“書蟲”大概有多少名學(xué)生?(將頻率視為概率)

          (2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認(rèn)為“書蟲”與性別有關(guān):

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某保險公司有一款保險產(chǎn)品的歷史收益率(收益率=利潤÷保費收入)的頻率分布直方圖如圖所示:

          (Ⅰ)試估計平均收益率;

          (Ⅱ)根據(jù)經(jīng)驗,若每份保單的保費在20元的基礎(chǔ)上每增加元,對應(yīng)的銷量(萬份)與(元)有較強線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下5組的對應(yīng)數(shù)據(jù):

          據(jù)此計算出的回歸方程為.

          (i)求參數(shù)的估計值;

          (ii)若把回歸方程當(dāng)作的線性關(guān)系,用(Ⅰ)中求出的平均收益率估計此產(chǎn)品的收益率,每份保單的保費定為多少元時此產(chǎn)品可獲得最大收益,并求出該最大收益.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓 ,直線過定點.

          (Ⅰ)若與圓相切,求的方程;

          (Ⅱ)若與圓相交于兩點,求的面積的最大值,并求此時直線的方程.(其中點是圓的圓心)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下面結(jié)論正確的是( )

          ①“所有2的倍數(shù)都是4的倍數(shù),某數(shù)是2的倍數(shù),則一定是4的倍數(shù)”,這是三段論推理,但其結(jié)論是錯誤的.

          ②在類比時,平面中的三角形與空間中的平行六面體作為類比對象較為合適.

          ③由平面三角形的性質(zhì)推測空間四面體的性質(zhì),這是一種合情推理.

          ④一個數(shù)列的前三項是1,2,3,那么這個數(shù)列的通項公式必為.

          A. ①③ B. ②③ C. ③④ D. ②④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知為坐標(biāo)原點,橢圓 的左焦點是,離心率為,且上任意一點的最短距離為.

          (1)求的方程;

          (2)過點的直線(不過原點)與交于兩點、, 為線段的中點.

          (i)證明:直線的斜率乘積為定值;

          (ii)求面積的最大值及此時的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在梯形中,,,.

          (1)求;

          (2)平面內(nèi)點的上方,且滿足,求的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案