日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x+
          t
          x
          (t>0)
          和點(diǎn)P(1,0),過點(diǎn)P作曲線y=f(x)的兩條切線PM、PN,切點(diǎn)分別為M、N.
          (Ⅰ)設(shè)|MN|=g(t),試求函數(shù)g(t)的表達(dá)式;
          (Ⅱ)是否存在t,使得M、N與A(0,1)三點(diǎn)共線.若存在,求出t的值;若不存在,請(qǐng)說明理由.
          (Ⅲ)在(Ⅰ)的條件下,若對(duì)任意的正整數(shù)n,在區(qū)間[2,n+
          64
          n
          ]
          內(nèi)總存在m+1個(gè)實(shí)數(shù)a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.
          分析:(I)設(shè)出M、N兩點(diǎn)的橫坐標(biāo)分別為x1、x2,對(duì)函數(shù)求導(dǎo)得到切線的斜率,寫出切線的方程,根據(jù)切線過一個(gè)點(diǎn),得到一個(gè)方程,根據(jù)根與系數(shù)的關(guān)系寫出兩點(diǎn)之間的長(zhǎng)度,得到函數(shù)的表示式.
          (II)根據(jù)三點(diǎn)共線寫出其中兩點(diǎn)連線的斜率相等,整理出最簡(jiǎn)單形式,把上一問做出的結(jié)果代入,求出t的值.
          (III)根據(jù)前面做出的函數(shù)只一個(gè)增函數(shù),寫出不同的自變量對(duì)應(yīng)的函數(shù)值的不等關(guān)系,根據(jù)對(duì)于任意的正整數(shù)都成立,得到m的取值范圍,得到最值.
          解答:解:(Ⅰ)設(shè)M、N兩點(diǎn)的橫坐標(biāo)分別為x1、x2,
          f′(x)=1-
          t
          x2
          ,
          ∴切線PM的方程為:y-(x1+
          t
          x1
          )=(1-
          t
          x12
          )(x-x1)
          ,
          又∵切線PM過點(diǎn)P(1,0),∴有0-(x1+
          t
          x1
          )=(1-
          t
          x12
          )(1-x1)
          ,
          即x12+2tx1-t=0,(1)
          同理,由切線PN也過點(diǎn)P(1,0),得x22+2tx2-t=0.(2)
          由(1)、(2),可得x1,x2是方程x2+2tx-t=0的兩根,∴
          x1+x2=-2t
          x1x2=-t.
          (*)|MN|=
          (x1-x2)2+(x1+
          t
          x1
          -x2-
          t
          x2
          )
          2

          =
          [(x1+x2)2-4x1x2][1+(1-
          t
          x1x2
          )
          2
          ]
          ,
          把(*)式代入,得|MN|=
          20t2+20t
          ,
          因此,函數(shù)g(t)的表達(dá)式為g(t)=
          20t2+20t
          (t>0)

          (Ⅱ)當(dāng)點(diǎn)M、N與A共線時(shí),kMA=kNA
          x1+
          t
          x1
          -1
          x1-0
          =
          x2+
          t
          x2
          -1
          x2-0
          ,即
          x12+t-x1
          x12
          =
          x22+t-x2
          x22
          ,
          化簡(jiǎn),得(x2-x1)[t(x2+x1)-x1x2]=0
          ∵x1≠x2,∴t(x2+x1)=x2x1.(3)
          把(*)式代入(3),解得t=
          1
          2

          ∴存在t,使得點(diǎn)M、N與A三點(diǎn)共線,且t=
          1
          2

          (Ⅲ)知g(t)在區(qū)間[2 , n+
          64
          n
          ]
          上為增函數(shù),
          g(2)≤g(ai)≤g(n+
          64
          n
          )
          (i=1,2,,m+1),
          m•g(2)≤g(a1)+g(a2)++g(am)≤m•g(n+
          64
          n
          )

          依題意,不等式m•g(2)<g(n+
          64
          n
          )
          對(duì)一切的正整數(shù)n恒成立,
          m
          20•22+20•2
          20(n+
          64
          n
          )2+20(n+
          64
          n
          )
          ,
          m<
          1
          6
          [(n+
          64
          n
          )2+(n+
          64
          n
          )]
          對(duì)一切的正整數(shù)n恒成立.
          n+
          64
          n
          ≥16
          ,∴
          1
          6
          [(n+
          64
          n
          )2+(n+
          64
          n
          )]
          1
          6
          [162+16]
          =
          136
          3
          ,
          m<
          136
          3
          .由于m為正整數(shù),∴m≤6.
          又當(dāng)m=6時(shí),存在a1=a2═am=2,am+1=16,對(duì)所有的n滿足條件.
          因此,m的最大值為6.
          點(diǎn)評(píng):本題考查函數(shù)的綜合題目,主要應(yīng)用導(dǎo)函數(shù)求最值來解題,本題解題的關(guān)鍵是正確應(yīng)用導(dǎo)數(shù),本題是一個(gè)綜合題目,綜合性比較強(qiáng),可以作為高考卷的壓軸題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
          (1)求m的值,并確定f(x)的解析式;
          (2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實(shí)數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請(qǐng)求出a的值,若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:浙江省東陽中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022

          已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南省許昌市長(zhǎng)葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

          已知函數(shù)f(x)、g(x),下列說法正確的是( )
          A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
          B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
          C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
          D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案