日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=lnx+x2
          (Ⅰ)若函數(shù)g(x)=f(x)-ax在定義域內(nèi)為增函數(shù),求實數(shù)a的取值范圍;
          (Ⅱ)設(shè)F(x)=2f(x)-3x2-kx(k∈R),若函數(shù)F(x)存在兩個零點m,n(0<m<n),且滿足2x0=m+n,問:函數(shù)F(x)在(x0,F(xiàn)(x0))處的切線能否平行于x軸?若能,求出該切線方程;若不能,請說明理由.
          分析:(Ⅰ)根據(jù)題意寫出g(x)再求導(dǎo)數(shù),由題意知g′(x)≥0,x∈(0,+∞)恒成立,轉(zhuǎn)化為a≤2x+
          1
          x
          ,再利用基本不等式求右邊的最小值,即可求得實數(shù)a的取值范圍;
          (Ⅱ)先假設(shè)F(x)在(x0,F(xiàn)(x0))的切線平行于x軸,其中F(x)=2lnx-x2-kx.結(jié)合題意列出方程組,利用換元法導(dǎo)數(shù)研究單調(diào)性,證出ln
          m
          n
          2(
          m
          n
          -1)
          m
          n
          +1
          在(0,1)上成立,從而出現(xiàn)與題設(shè)矛盾,說明原假設(shè)不成立.由此即可得到函數(shù)F(x)在(x0,F(xiàn)(x0))處的切線不能平行于x軸.
          解答:解:(Ⅰ)∵g(x)=f(x)-ax=lnx+x2-ax,∴g′(x)=
          1
          x
          +2x-a
          由題意知,g′(x)≥0,x∈(0,+∞)恒成立,即a≤(2x+
          1
          x
          min
          又x>0,2x+
          1
          x
          2
          2
          ,當(dāng)且僅當(dāng)x=
          2
          2
          時等號成立
          故(2x+
          1
          x
          min=2
          2
          ,所以a≤2
          2

          (Ⅱ)設(shè)F(x)在(x0,F(xiàn)(x0))的切線平行于x軸,其中F(x)=2lnx-x2-kx
          結(jié)合題意,有
          2lnm-m2-km=0…①
          2lnn-n2-kn=0…②
          m+n=2x0…③
          2
          x0
          -2x0-k=0…④

          ①-②得2ln
          m
          n
          -(m+n)(m-n)=k(m-n)
          所以k=
          2ln
          m
          n
          m-n
          -2x0
          ,由④得k=
          2
          x0
          -2x0
          所以ln
          m
          n
          =
          2(m-n)
          m+n
          =
          2(
          m
          n
          -1)
          m
          n
          +1
          …⑤
          設(shè)u=
          m
          n
          ∈(0,1),得⑤式變?yōu)閘nu-
          2u-2
          u+1
          =0(u∈(0,1))
          設(shè)y=lnu-
          2u-2
          u+1
          (u∈(0,1)),可得y′=
          1
          u
          -
          2(u+1)-(2u-2)
          (u+1)2
          =
          (u-1)2
          u(u+1)2
          >0
          所以函數(shù)y=lnu-
          2u-2
          u+1
          在(0,1)上單調(diào)遞增,
          因此,y<y|u=1=0,即lnu-
          2u-2
          u+1
          <0,也就是ln
          m
          n
          2(
          m
          n
          -1)
          m
          n
          +1
          此式與⑤矛盾
          所以函數(shù)F(x)在(x0,F(xiàn)(x0))處的切線不能平行于x軸.
          點評:本題給出含有對數(shù)符號的基本初等函數(shù)函數(shù),討論了函數(shù)的單調(diào)性并探索函數(shù)圖象的切線問題,著重考查了導(dǎo)數(shù)的幾何意義和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等知識,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=2x-2+ae-x(a∈R)
          (1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
          (2)當(dāng)a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2+2|lnx-1|.
          (1)求函數(shù)y=f(x)的最小值;
          (2)證明:對任意x∈[1,+∞),lnx≥
          2(x-1)
          x+1
          恒成立;
          (3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
          x1+x2
          2
          時,又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
          1
          f(n)
          }的前n項和為Sn,則S2012的值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=xlnx
          (Ⅰ)求函數(shù)f(x)的極值點;
          (Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          3
          x
          a
          +
          3
          (a-1)
          x
          ,a≠0且a≠1.
          (1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
          (2)已知當(dāng)x>0時,函數(shù)在(0,
          6
          )上單調(diào)遞減,在(
          6
          ,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
          (3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案