日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (文)已知二次函數(shù)f(x)=ax2+bx,f(x+1)為偶函數(shù),函數(shù)的f(x)的圖象與直線y=x相切.

          (1)求f(x)的解析式;

          (2)若函數(shù)g(x)=[f(x)-k]x在(-∞,+∞)上是單調(diào)減函數(shù),求k的取值范圍.

          答案:
          解析:

            (1)∵為偶函數(shù),∴,即

            恒成立,即恒成立,

            ∴,∴,∴.∵函數(shù)的圖象與直線相切

            ∴二次方程有兩相等實數(shù)根,∴

            ∴.(6分);

            (2)∵,∴.∵上是單調(diào)減函數(shù),∴上恒成立,∴,得.故k的取值范圍為[,+∞).(12分)


          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)f(x)=x2+x的定義域D 恰是不等式 f(-x)+f(x)≤2|x|的解集,其值域為A.函數(shù) g(x)=x3-3tx+
          1
          2
          t
          的定義域為[0,1],值域為B.
          (1)求f (x) 的定義域D和值域 A;
          (2)(理) 試用函數(shù)單調(diào)性的定義解決下列問題:若存在實數(shù)x0∈(0,1),使得函數(shù) g(x)=x3-3tx+
          1
          2
          t
          在[0,x0]上單調(diào)遞減,在[x0,1]上單調(diào)遞增,求實數(shù)t的取值范圍并用t表示x0
          (3)(理) 是否存在實數(shù)t,使得A⊆B成立?若存在,求實數(shù)t 的取值范圍;若不存在,請說明理由.
          (4)(文) 是否存在負實數(shù)t,使得A⊆B成立?若存在,求負實數(shù)t 的取值范圍;若不存在,請說明理由.
          (5)(文) 若函數(shù)g(x)=x3-3tx+
          1
          2
          t
          在定義域[0,1]上單調(diào)遞減,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2007•閔行區(qū)一模)已知二次函數(shù)f(x)=ax2+bx+c(a>0,c>0)的圖象與x軸有兩個不同的公共點,且有f(c)=0,當0<x<c時,恒有f(x)>0.
          (1)(文)當a=1,c=
          12
          時,求出不等式f(x)<0的解;
          (2)(理)求出不等式f(x)<0的解(用a,c表示);
          (3)若以二次函數(shù)的圖象與坐標軸的三個交點為頂點的三角形的面積為8,求a的取值范圍;
          (4)若f(0)=1,且f(x)≤m2-2km+1,對所有x∈[0,c],k∈[-1,1]恒成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (08年宣武區(qū)質(zhì)量檢一文)(14分)

          已知二次函數(shù)f(x)=同時滿足:①不等式f(x)0的解集有且只有一個元素②在定義域內(nèi)存在0,使得不等式成立。設(shè)數(shù)列{}的前n項和.

          (1)       求函數(shù)f(x)的表達式;

          (2)       求數(shù)列{}的通項公式;

          設(shè)各項均不為零的數(shù)列{}中,所有滿足的整數(shù)i的個數(shù)稱為這個數(shù)列{}的變號數(shù)。令(n為正整數(shù)),求數(shù)列{}的變號數(shù)。

           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知二次函數(shù)f(x)=ax2+bx+c(a>0,c>0)的圖象與x軸有兩個不同的公共點,且有f(c)=0,當0<x<c時,恒有f(x)>0.
          (1)(文)當a=1,數(shù)學公式時,求出不等式f(x)<0的解;
          (2)(理)求出不等式f(x)<0的解(用a,c表示);
          (3)若以二次函數(shù)的圖象與坐標軸的三個交點為頂點的三角形的面積為8,求a的取值范圍;
          (4)若f(0)=1,且f(x)≤m2-2km+1,對所有x∈[0,c],k∈[-1,1]恒成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2008年上海市閔行區(qū)高考數(shù)學一模試卷(文理合卷)(解析版) 題型:解答題

          已知二次函數(shù)f(x)=ax2+bx+c(a>0,c>0)的圖象與x軸有兩個不同的公共點,且有f(c)=0,當0<x<c時,恒有f(x)>0.
          (1)(文)當a=1,時,求出不等式f(x)<0的解;
          (2)(理)求出不等式f(x)<0的解(用a,c表示);
          (3)若以二次函數(shù)的圖象與坐標軸的三個交點為頂點的三角形的面積為8,求a的取值范圍;
          (4)若f(0)=1,且f(x)≤m2-2km+1,對所有x∈[0,c],k∈[-1,1]恒成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習冊答案