【題目】設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若c=2,sinB=2sinA.
(1)若C=,求a,b的值;
(2)若cosC=,求△ABC的面積.
【答案】(1)a=2,b=4(2)
【解析】試題分析:(1)由已知及正弦定理可得 ,利用余弦定理可求
的值,進(jìn)而可求
;(2)由已知利用同角三角函數(shù)基本關(guān)系式可求
,又
,利用余弦定理可解得
,從而可求
,利用三角形面積公式計(jì)算得解.
試題解析:(1)∵C=,sinB=2sinA, ∴由正弦定理可得:b=2a ,∵c=2
,,∴由余弦定理可得:c2=a2+b2﹣2abcosC,即:12=a2+4a2﹣2a2,∴解得:a=2,b=4
(2)∵cosC=,∴sinC=
=
,又∵b=2a,∴由余弦定理可得:c2=a2+b22abcosC=a2+4a2﹣a2=4a2,解得:c=2a,∵c=2
,可得:a=
,b=2
,∴S△ABC=
absinC=
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),
,點(diǎn)
滿足
,其中
,
,且
;圓
的圓心
在
軸上,且與點(diǎn)
的軌跡相切與點(diǎn)
.
(1)求圓的方程;
(2)若點(diǎn),點(diǎn)
是圓
上的任意一點(diǎn),求
的取值范圍;
(3)過點(diǎn)的兩條直線分別與圓
交于
、
兩點(diǎn),若直線
、
的斜率互為相反數(shù),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:關(guān)于x的不等式x2+2ax+4>0對(duì)于一切x∈R恒成立,命題q:x∈11,2], x2-a≥0,若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),過點(diǎn)
動(dòng)直線
與圓
交與點(diǎn)
兩點(diǎn).
(1)若,求直線
的傾斜角;
(2)求線段中點(diǎn)
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,過點(diǎn)
的直線與拋物線
相交于點(diǎn)
、
兩點(diǎn),設(shè)
,
.
(1)求證:為定值;
(2)是否存在平行于軸的定直線被以
為直徑的圓截得的弦長為定值?如果存在,求出該直線方程和弦長,如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:+
=1(a>b>0)的離心率為
,且過點(diǎn)(1,
).
(I)求橢圓C的方程;
(Ⅱ)設(shè)與圓O:x2+y2=相切的直線l交橢圓C與A,B兩點(diǎn),求△OAB面積的最大值,及取得最大值時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)
的極值和單調(diào)區(qū)間;
(2)若在區(qū)間上至少存在一點(diǎn)
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的離心率為
,以
為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn),和平面內(nèi)一點(diǎn)
(
),過點(diǎn)
任作直線
與橢圓
相交于
,
兩點(diǎn),設(shè)直線
,
,
的斜率分別為
,
,
,
,試求
,
滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為
,橢圓
過點(diǎn)
,直線
交
軸于
,且
,
為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)設(shè)是橢圓
的上頂點(diǎn),過點(diǎn)
分別作直線
交橢圓
于
,
兩點(diǎn),設(shè)這兩條直線的斜率分別為
,且
,證明:直線
過定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com