【題目】設△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若c=2,sinB=2sinA.
(1)若C=,求a,b的值;
(2)若cosC=,求△ABC的面積.
【答案】(1)a=2,b=4(2)
【解析】試題分析:(1)由已知及正弦定理可得 ,利用余弦定理可求
的值,進而可求
;(2)由已知利用同角三角函數(shù)基本關系式可求
,又
,利用余弦定理可解得
,從而可求
,利用三角形面積公式計算得解.
試題解析:(1)∵C=,sinB=2sinA, ∴由正弦定理可得:b=2a ,∵c=2
,,∴由余弦定理可得:c2=a2+b2﹣2abcosC,即:12=a2+4a2﹣2a2,∴解得:a=2,b=4
(2)∵cosC=,∴sinC=
=
,又∵b=2a,∴由余弦定理可得:c2=a2+b22abcosC=a2+4a2﹣a2=4a2,解得:c=2a,∵c=2
,可得:a=
,b=2
,∴S△ABC=
absinC=
.
科目:高中數(shù)學 來源: 題型:
【題目】已知點,
,點
滿足
,其中
,
,且
;圓
的圓心
在
軸上,且與點
的軌跡相切與點
.
(1)求圓的方程;
(2)若點,點
是圓
上的任意一點,求
的取值范圍;
(3)過點的兩條直線分別與圓
交于
、
兩點,若直線
、
的斜率互為相反數(shù),求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】命題p:關于x的不等式x2+2ax+4>0對于一切x∈R恒成立,命題q:x∈11,2], x2-a≥0,若p∨q為真,p∧q為假,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,過點
的直線與拋物線
相交于點
、
兩點,設
,
.
(1)求證:為定值;
(2)是否存在平行于軸的定直線被以
為直徑的圓截得的弦長為定值?如果存在,求出該直線方程和弦長,如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:+
=1(a>b>0)的離心率為
,且過點(1,
).
(I)求橢圓C的方程;
(Ⅱ)設與圓O:x2+y2=相切的直線l交橢圓C與A,B兩點,求△OAB面積的最大值,及取得最大值時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)
的極值和單調(diào)區(qū)間;
(2)若在區(qū)間上至少存在一點
,使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:
的離心率為
,以
為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓的標準方程;
(2)已知點,和平面內(nèi)一點
(
),過點
任作直線
與橢圓
相交于
,
兩點,設直線
,
,
的斜率分別為
,
,
,
,試求
,
滿足的關系式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,橢圓
過點
,直線
交
軸于
,且
,
為坐標原點.
(1)求橢圓的方程;
(2)設是橢圓
的上頂點,過點
分別作直線
交橢圓
于
,
兩點,設這兩條直線的斜率分別為
,且
,證明:直線
過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com