日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2007•揭陽二模)如圖,線段AB過y軸負(fù)半軸上一點M(0,a),A、B兩點到y(tǒng)軸距離的差為2k.
          (Ⅰ)若AB所在的直線的斜率為k(k≠0),求以y軸為對稱軸,且過A、O、B三點的拋物線的方程;
          (Ⅱ)設(shè)(1)中所確定的拋物線為C,點M是C的焦點,若直線AB的傾斜角為60°,又點P在拋物線C上由A到B運動,試求△PAB面積的最大值.
          分析:(1)依題意設(shè)所求的拋物線方程為x2=-2py(p>0),直線AB的方程為y=kx+a,由
          y=kx+a
          x2=-2py
          得x2+2pkx+2pa=0
          設(shè)A(x1,y1),B(x2,y2)(x1<0,x2>0,y1<0,y2<0),x1+x2=-2pk,若|x1|-|x2|=2k可求p
          (2)解法1:可得直線AB的方程為y=
          3
          x-
          1
          2
          ,解方程組
          x2=-2y
          y=
          3
          x-
          1
          2
          可求點A,B,從而可求AB,設(shè)點P(m,n),依題意知-
          3
          -2≤m≤-
          3
          +2
          ,且n=-
          1
          2
          m2
          ,根據(jù)點P到直線AB的距離d=
          |
          3
          m-n-
          1
          2
          |
          2
          =
          |
          1
          2
          m2+
          3
          m-
          1
          2
          |
          2
          可求面積的最大值
          解法2:直線AB的方程為y=
          3
          x-
          1
          2
          ,由
          x2=-2y
          y=
          3
          x-
          1
          2
          x2+2
          3
          x-1=0
          ,x1+x2=-2
          3
          ,x1x2=-1,
          |AB|=
          1+k2
          |x1-x2|=2
          (x1+x2)2-4x1x2
          以下同法一
          解答:(1)解:依題意設(shè)所求的拋物線方程為x2=-2py(p>0),----------(1分)
          ∵直線AB的斜率為k且過點M(0,a)∴直線AB的方程為y=kx+a
          y=kx+a
          x2=-2py
          得x2+2pkx+2pa=0----------①------------------(3分)
          設(shè)A(x1,y1),B(x2,y2)(x1<0,x2>0,y1<0,y2<0)
          則x1,x2是方程①的兩個實根
          ∴x1+x2=-2pk,若|x1|-|x2|=2k
          則-x1-x2=2k,-2pk=-2k∴p=1---------------------------(5分)
          若|x2|-|x1|=2k則x1+x2=-2pk=2k∴p=-1與p>0矛盾----(6分)
          ∴該拋物線的方程為x2=-2y.-------(7分)
          (2)解法1:拋物線x2=-2y的焦點為(0,-
          1
          2
          )即M點坐標(biāo)為(0,-
          1
          2

          直線AB的斜率k=tan60°=
          3

          ∴直線AB的方程為y=
          3
          x-
          1
          2
          ,-----------------(8分)
          解方程組
          x2=-2y
          y=
          3
          x-
          1
          2
          x1=-
          3
          -2
          y1=-
          7+4
          3
          2
          x2=-
          3
          +2
          y2=-
          7-4
          3
          2

          即點A(-
          3
          -2,-
          7+4
          3
          2
          )
          ,B(-
          3
          +2,-
          7-4
          3
          2
          )
          -------------------(10分)
          |AB|=
          42+(4
          3
          )
          2
          =8

          設(shè)點P(m,n),依題意知-
          3
          -2≤m≤-
          3
          +2
          ,且n=-
          1
          2
          m2

          則點P到直線AB的距離d=
          |
          3
          m-n-
          1
          2
          |
          2
          =
          |
          1
          2
          m2+
          3
          m-
          1
          2
          |
          2
          =
          |-(m+
          3
          )
          2
          +4|
          4

          當(dāng)m=-
          3
          時,dmax=1,--------------------------------(13分)
          這時Smax=
          1
          2
          |AB|dmax
          =
          1
          2
          ×8×1=4
          .-----------------------(15分)
          解法2:拋物線x2=-2y的焦點為(0,-
          1
          2
          )即M點坐標(biāo)為(0,-
          1
          2

          直線AB的斜率k=tan60°=
          3

          ∴直線AB的方程為y=
          3
          x-
          1
          2
          ,
          x2=-2y
          y=
          3
          x-
          1
          2
          x2+2
          3
          x-1=0
          x1+x2=-2
          3
          ,x1x2=-1,
          |AB|=
          1+k2
          |x1-x2|=2
          (x1+x2)2-4x1x2
          =2
          12+4
          =8
          [以下同上]
          點評:本題主要考查了利用拋物線的性質(zhì)求解拋物線的方程,直線與拋物線的位置關(guān)系的應(yīng)用,點到直線的距離公式的應(yīng)用,利用二次函數(shù)的性質(zhì)求解函數(shù)的最值等知識的綜合應(yīng)用,要注意方程的思想的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•揭陽二模)如圖(1)示,定義在D上的函數(shù)f(x),如果滿足:對?x∈D,?常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖(1)、(2)中的常數(shù)A、B可以是正數(shù),也可以是負(fù)數(shù)或零)  

          (Ⅰ)試判斷函數(shù)f(x)=x3+
          48
          x
          在(0,+∞)上是否有下界?并說明理由;
          (Ⅱ)又如具有如圖(2)特征的函數(shù)稱為在D上有上界.請你類比函數(shù)有下界的定義,給出函數(shù)f(x)在D上有上界的定義,并判斷(Ⅰ)中的函數(shù)在(-∞,0)上是否有上界?并說明理由;
          (Ⅲ)若函數(shù)f(x)在D上既有上界又有下界,則稱函數(shù)f(x)在D上有界,函數(shù)f(x)叫做有界函數(shù).試探究函數(shù)f(x)=ax3+
          b
          x
          (a>0,b>0a,b是常數(shù))是否是[m,n](m>0,n>0,m、n是常數(shù))上的有界函數(shù)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•揭陽二模)下圖是用同樣規(guī)格的黑、白兩色正方形瓷磚鋪設(shè)的若干圖案,則按此規(guī)律第n個圖案中需用黑色瓷磚
          4n+8
          4n+8
          塊.(用含n的代數(shù)式表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•揭陽二模)已知函數(shù)f(x)=logax(a>0,a≠1)的圖象如右圖示,函數(shù)y=g(x)的圖象與y=f(x)的圖象關(guān)于直線y=x對稱,則函數(shù)y=g(x)的解析式為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•揭陽二模)已知點P(x,y)的坐標(biāo)滿足條件
          x+y≤4
          y≥x
          x≥1.
          則x2+y2的最大值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•揭陽二模)某地區(qū)的一種特色水果上市時間僅能持續(xù)幾個月,預(yù)測上市初期和后期會因供不應(yīng)求使價格呈連續(xù)上漲的態(tài)勢,而中期又將出現(xiàn)供大于求使價格連續(xù)下跌,為準(zhǔn)確研究其價格走勢,下面給出的四個價格模擬函數(shù)中合適的是(其中p,q為常數(shù),且q>1,x∈[0,5],x=0表示4月1日,x=1表示5月1日,…以此類推)( 。

          查看答案和解析>>

          同步練習(xí)冊答案