日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知 x≥0成等差數(shù)列.又?jǐn)?shù)列{an}an>0,a1=3 ,此數(shù)列的前n項的和Snn∈N*對所有大于1的正整數(shù)n都有SnfSn-1

          1求數(shù)列{an}的第n+1項;

          2,的等比中項,且Tn為{bn}n項和求Tn.

          【答案】1 an+1=6n+32

          【解析】

          試題分析:1x0成等差數(shù)列,利用等差數(shù)列定義得到fx的函數(shù)解析式,再利用Sn=fSn-1得到數(shù)列an的關(guān)于前n項和式子,在有前n項和求出數(shù)列的第n+1項;2由于,的等比中項,所以可以利用等比中項的定義得到數(shù)列bn的通項公式,在利用裂項相消法可以求{bn}的前n項和Tn

          試題解析:因為, x≥0成等差數(shù)列,所以×2.

          所以fx2.

          因為Sn=fSn-1)(n≥2

          所以Sn=fSn-12.

          所以,.

          所以{}是以為公差的等差數(shù)列.

          因為a1=3,所以S1=a1=3.

          所以n-1 n.

          所以Sn=3n2n∈N*.所以an+1=Sn+1-Sn=3n+12-3n2=6n+3.

          2因為數(shù)列,的等比中項

          所以2·,

          所以bn.

          所以Tn=b1+b2+…+bn

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列關(guān)于四種命題的真假判斷正確的是( )

          A. 原命題與其逆否命題的真值相同 B. 原命題與其逆命題的真值相同

          C. 原命題與其否命題的真值相同 D. 原命題的逆命題與否命題的真值相反

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,過點的直線的傾斜角為45°,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線和曲線的交點為點.

          (1)求直線的參數(shù)方程;

          (2)求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱柱中,側(cè)面底面,底面為直角梯形,其中,,中點.

          (1)求證:平面;

          (2)求銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)中,過點的直線與拋物線相交于兩點,.

          (1)求證:為定值;

          (2)是否存在平行于軸的定直線被以為直徑的截得的弦長為定值?如果存在,該直線方程和弦長;如果不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】五一節(jié)期間,某商場為吸引顧客消費推出一項優(yōu)惠活動.活動規(guī)則如下:消費額每滿100元可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券.(假定指針等可能地停在任一位置, 指針落在區(qū)域的邊界時,重新轉(zhuǎn)一次)指針?biāo)诘膮^(qū)域及對應(yīng)的返劵金額見右表.

          例如:消費218元,可轉(zhuǎn)動轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.

          (1)已知顧客甲消費后獲得次轉(zhuǎn)動轉(zhuǎn)盤的機會,已知他每轉(zhuǎn)一次轉(zhuǎn)盤指針落在區(qū)域邊界的概率為,每次轉(zhuǎn)動轉(zhuǎn)盤的結(jié)果相互獨立,設(shè)為顧客甲轉(zhuǎn)動轉(zhuǎn)盤指針落在區(qū)域邊界的次數(shù),的數(shù)學(xué)期望方差.求、的值;

          (2)顧客乙消費280元,并按規(guī)則參與了活動,他獲得返券的金額記為(元.求隨機變量的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】直線l過點P(2,-3)且與過點M(-1,2),N(5,2)的直線垂直,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),在上任取三個數(shù),均存在以為三邊的三角形,則實數(shù)的取值范圍為

          A. B.

          C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,已知四邊形為直角梯形, , , , 為等邊三角形, ,如圖2,將, 分別沿折起,使得平面平面,平面平面,連接,設(shè)上任意一點.

          1)證明: 平面;

          2)若,求的值.

          查看答案和解析>>

          同步練習(xí)冊答案