日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 記關(guān)于x的不等式
          x-ax+1
          <0
          的解集為P,不等式|x-1|≤3的解集為Q.
          (1)若a=3,求P.
          (2)若P⊆Q,求實(shí)數(shù)a的取值范圍.
          分析:(1)將
          x-3
          x+1
          <0
          轉(zhuǎn)化成(x-3)(x+1)<0進(jìn)行求解即可;
          (2)求出集合Q,討論a分別求出集合P,使P⊆Q,建立等量關(guān)系,求出參數(shù)a的范圍,最后將符號(hào)條件的a求并集即可.
          解答:解:(1)由
          x-3
          x+1
          <0

          轉(zhuǎn)化成(x-3)(x+1)<0
          解可得P={x|-1<x<3}.

          (2)Q={x||x-1|≤3}={x|-2≤x≤4}.
          當(dāng)a>-1時(shí),得P={x|-1<x<a},又P⊆Q,所以-1<a≤4,
          當(dāng)a<-1時(shí),得P={x|a<x<-1},又P⊆Q,所以-2≤a<-1,
          當(dāng)a=-1時(shí),得P=∅,滿足P⊆Q,所以,a=-1符合題意.
          綜上,a的取值范圍是[-2,4].
          點(diǎn)評(píng):本題主要考查了絕對(duì)值不等式的解法,以及集合的包含關(guān)系判斷及應(yīng)用,屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          記關(guān)于x的不等式
          x-ax+1
          <0
          的解集為P,不等式|x-1|≤1的解集為Q.
          (Ⅰ)若a=3,求P;
          (Ⅱ)若Q⊆P,求正數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          記關(guān)于x的不等式|x-a|<2的解集為A,不等式
          x-2x+1
          >0
          的解集為B.
          (1)若a=1,求A∩B;
          (2)若A∪B=R,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          記關(guān)于x的不等式
          x-ax+1
          >0
          的解集為P,不等式|x-1|≤1的解集為Q,
          (1)若a=3,求P∪Q.
          (2)若Q⊆P,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          記關(guān)于x的不等式
          x-ax+1
          <0的解集為P,不等式|x-1|≤1的解集為Q.若Q⊆P,則正數(shù)a的取值范圍
          (2,+∞)
          (2,+∞)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案