日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),a1=1,前n項(xiàng)和為Sn , 且an+12﹣nλ2﹣1=2λSn , λ為正常數(shù).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)記bn= ,Cn= + (k,n∈N*,k≥2n+2). 求證:
          ①bn<bn+1;
          ②Cn>Cn+1

          【答案】
          (1)解:∵a2n+1﹣nλ2﹣1=2λSn,λ為正常數(shù).∴n≥2時, ﹣(n﹣1)λ2﹣1=2λSn1

          ∴a2n+1﹣nλ2 +(n﹣1)λ2=2λan.化為:an+1﹣an=λ.

          n=1時, ﹣1=2λ,解得a2=λ+1,因此a2﹣a1=λ.

          ∴數(shù)列{an}是等差數(shù)列,公差為λ.

          ∴an=1+λ(n﹣1)


          (2)證明:①由(1)可得:Sn=

          ∴bn= = =

          bn+1﹣bn= = >0.

          ∴bn+1>bn

          ②∵Cn= + ,(k,n∈N*,k≥2n+2).

          ∴Cn+1﹣Cn=

          = +

          =

          ∵k≥2n+2,∴n+1<k﹣n,n<k﹣n﹣1.

          由an>0,∴0<Sn<Skn1,∴

          又0<bn+1<bkn,∴

          ∴Cn+1﹣Cn<0.∴Cn>Cn+1


          【解析】(1)a2n+1﹣nλ2﹣1=2λSn , λ為正常數(shù).可得:n≥2時, ﹣(n﹣1)λ2﹣1=2λSn1 . 相減化為:an+1﹣an=λ.n=1時, ﹣1=2λ,解得a2=λ+1,因此a2﹣a1=λ.利用等差數(shù)列的通項(xiàng)公式可得:an=1+λ(n﹣1).(2)①由(1)可得:Sn= .可得bn= = ,作差bn+1﹣bn , 化簡即可得出.②Cn= + ,(k,n∈N*,k≥2n+2).作差Cn+1﹣Cn= = .利用其單調(diào)性即可得出.
          【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項(xiàng)公式才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,等邊三角形的中線與中位線相交于,已知旋轉(zhuǎn)過程中的一個圖形,下列命題中,錯誤的是

          A. 恒有

          B. 異面直線不可能垂直

          C. 恒有平面⊥平面

          D. 動點(diǎn)在平面上的射影在線段

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線

          (1)若直線與直線平行,求實(shí)數(shù)的值;

          (2)若, ,點(diǎn)在直線上,已知的中點(diǎn)在軸上,求點(diǎn)的坐標(biāo).

          【答案】(1);(2

          【解析】試題分析:(1)根據(jù)兩直線平行,對應(yīng)方向向量共線,列方程即可求出的值;(2)根據(jù)時,直線的方程設(shè)出點(diǎn)的坐標(biāo),由此求出的中點(diǎn)坐標(biāo),再由中點(diǎn)在軸上求出點(diǎn)的坐標(biāo).

          試題解析:(1)∵直線與直線平行,

          ,

          ,經(jīng)檢驗(yàn)知,滿足題意.

          (2)由題意可知: ,

          設(shè),則的中點(diǎn)為,

          的中點(diǎn)在軸上,∴,

          型】解答
          結(jié)束】
          16

          【題目】在平面直角坐標(biāo)系xOy中,已知ABC三個頂點(diǎn)坐標(biāo)為A(7,8),B(10,4)C(2,-4)

          (1)求BC邊上的中線所在直線的方程;

          (2)求BC邊上的高所在直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,已知S37,

          a133a2,a34構(gòu)成等差數(shù)列.

          (1)求數(shù)列{an}的通項(xiàng);

          (2),n12,,求數(shù)列{bn}的前n項(xiàng)和Tn .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,橢圓 + =1(a>b>0)的離心率為e,D為右準(zhǔn)線上一點(diǎn).

          (1)若e= ,點(diǎn)D的橫坐標(biāo)為4,求橢圓的方程;
          (2)設(shè)斜率存在的直線l經(jīng)過點(diǎn)P( ,0),且與橢圓交于A,B兩點(diǎn).若 + = ,DP⊥l,求橢圓離心率e.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知隨機(jī)變量 的取值為不大于 的非負(fù)整數(shù)值,它的分布列為:

          0

          1

          2

          n

          其中 )滿足: ,且
          定義由 生成的函數(shù) ,令
          (I)若由 生成的函數(shù) ,求 的值;
          (II)求證:隨機(jī)變量 的數(shù)學(xué)期望 的方差 ;

          (Ⅲ)現(xiàn)投擲一枚骰子兩次,隨機(jī)變量 表示兩次擲出的點(diǎn)數(shù)之和,此時由 生成的函數(shù)記為 ,求 的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了調(diào)查某社區(qū)中學(xué)生的課外活動,對該社區(qū)的100名中學(xué)生進(jìn)行了調(diào)研,隨機(jī)抽取了若干名,年齡全部介于1318之間,將年齡按如下方式分成五組:第一組第二組;第五組.按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前三個組的頻率之比為,且第二組的頻數(shù)為4.

          1試估計(jì)這100名中學(xué)生中年齡在內(nèi)的人數(shù);

          2求調(diào)研中隨機(jī)抽取的人數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ2(1+3sin2θ)=4,曲線C2 (θ為參數(shù)).
          (Ⅰ)求曲線C1的直角坐標(biāo)方程和C2的普通方程;
          (Ⅱ)極坐標(biāo)系中兩點(diǎn)A(ρ1 , θ0),B(ρ2 , θ0+ )都在曲線C1上,求 + 的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=cos(2x+ )+2cos2x,x∈R.
          (1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
          (2)將函數(shù)f(x)的圖象向右平移 個單位長度后得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間 上的值域.

          查看答案和解析>>

          同步練習(xí)冊答案