日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=sin(ωx+φ),其中ω>0,|φ|<
          π
          2

          (1)若cos
          π
          4
          cosφ-sin
          4
          sinφ=0
          ,求φ的值;
          (2)在(1)的條件下,若函數(shù)f(x)的圖象的相鄰兩條對稱軸之間的距離等于
          π
          3
          ,求最小的正實(shí)數(shù)m,使得函數(shù)的圖象向左平移m個單位后所對應(yīng)的函數(shù)是偶函數(shù).
          分析:(1)利用誘導(dǎo)公式及和角的余弦公式進(jìn)行化簡可求φ的值
          (2)由三角函數(shù)的性質(zhì)可知,函數(shù)f(x)的圖象的相鄰兩條對稱軸之間的距離即為周期的
          1
          2
          T,從而可求T,然后根據(jù)周期公式T=
          ω
          可求ω,從而可得f(x)=sin(3x+
          π
          4
          )
          ,函數(shù)的圖象向左平移m個單位后所對應(yīng)的函數(shù)f(x+m)=sin(3x+3m+
          π
          4
          )
          是偶函數(shù),可得3×0+3m+
          π
          4
          =kπ+
          π
          2
          (k∈Z)
          從而可求m
          解答:解:(1)cos
          π
          4
          cosφ-sin
          4
          sinφ=0⇒0=cos
          π
          4
          cosφ-sin
          π
          4
          sinφ=cos(
          π
          4
          +φ)

          |φ|<
          π
          2
          ,∴φ=
          π
          4
          ;
          (2)由題意知,
          T
          2
          =
          π
          3

          T=
          3

          ω=
          T
          =3
          f(x)=sin(3x+
          π
          4
          )

          f(x+m)=sin(3x+3m+
          π
          4
          )
          是偶函數(shù),
          3×0+3m+
          π
          4
          =kπ+
          π
          2
          (k∈Z)

          m=
          3
          +
          π
          12
          (k∈Z)
          所以,最小的正實(shí)數(shù)m是
          π
          12
          點(diǎn)評:本題主要考查了誘導(dǎo)公式及兩角和的余弦公式,考查了由三角函數(shù)的部分圖象的性質(zhì)求解函數(shù)的解析式,還考查了三角函數(shù)的性質(zhì)的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=ax+bsinx,當(dāng)x=
          π
          3
          時,取得極小值
          π
          3
          -
          3

          (1)求a,b的值;
          (2)對任意x1,x2∈[-
          π
          3
          π
          3
          ]
          ,不等式f(x1)-f(x2)≤m恒成立,試求實(shí)數(shù)m的取值范圍;
          (3)設(shè)直線l:y=g(x),曲線S:y=F(x),若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點(diǎn);②對任意x∈R都有g(shù)(x)≥F(x),則稱直線l與曲線S的“上夾線”.觀察下圖:

          根據(jù)上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并作適當(dāng)?shù)恼f明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-blnx在(1,2]是增函數(shù),g(x)=x-b
          x
          在(0,1)為減函數(shù).
          (1)求b的值;
          (2)設(shè)函數(shù)φ(x)=2ax-
          1
          x2
          是區(qū)間(0,1]上的增函數(shù),且對于(0,1]內(nèi)的任意兩個變量s、t,f(s)≥?(t)恒成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=cos( 2x+
          π
          3
          )+sin2x.
          (Ⅰ)求函數(shù)f(x)的最小正周期和值域;
          (Ⅱ)在△ABC中,角A、B、C的對邊分別為a、b、c,滿足2
          AC
          CB
          =
          2
          ab,c=2
          2
          ,f(A)=
          1
          2
          -
          3
          4
          ,求△ABC的面積S.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知矩陣A=
          a2
          1b
          有一個屬于特征值1的特征向量
          α
          =
          2
          -1
          ,
          ①求矩陣A;
          ②已知矩陣B=
          1-1
          01
          ,點(diǎn)O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應(yīng)變換作用下所得到的△O'M'N'的面積.
          (2)已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
          x=t-3
          y=
          3
           t
          (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,曲線C的極坐標(biāo)方程為ρ2-4ρco sθ+3=0.
          ①求直線l普通方程和曲線C的直角坐標(biāo)方程;
          ②設(shè)點(diǎn)P是曲線C上的一個動點(diǎn),求它到直線l的距離的取值范圍.
          (3)已知函數(shù)f(x)=|x-1|+|x+1|.
          ①求不等式f(x)≥3的解集;
          ②若關(guān)于x的不等式f(x)≥a2-a在R上恒成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          a
          2x
          +xlnx
          ,g(x)=x3-x2-x-1.
          (1)如果存在x,x∈[0,2],使得g(x)-g(x)≥M,求滿足該不等式的最大整數(shù)M;
          (2)如果對任意的s,t∈[
          1
          3
          ,2],都有f(s)≥g(t)成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案