日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          a
          2x
          +xlnx
          ,g(x)=x3-x2-x-1.
          (1)如果存在x,x∈[0,2],使得g(x)-g(x)≥M,求滿足該不等式的最大整數(shù)M;
          (2)如果對任意的s,t∈[
          1
          3
          ,2],都有f(s)≥g(t)成立,求實(shí)數(shù)a的取值范圍.
          分析:(1)存在x1、x2∈[0,2],使得g(x1)-g(x2)≥M成立等價于g(x)max-g(x)min≥M;
          (2)對于任意的s、t∈[
          1
          3
          ,2],都有f(s)≥g(t)成立等價于f(x)≥g(x)max,進(jìn)一步利用分離參數(shù)法,即可求得實(shí)數(shù)a的取值范圍.
          解答:解:(1)存在x1、x2∈[0,2],使得g(x1)-g(x2)≥M成立等價于g(x)max-g(x)min≥M
          ∵g(x)=x3-x2-x-1,∴g′(x)=(x-1)(3x+1)
          ∴g(x)在(0,1)上單調(diào)遞減,在( 1,2)上單調(diào)遞增,
          ∴g(x)min=g( 1)=-2,g(x)max=g(2)=1
          ∴g(x)max-g(x)min=3,∴滿足的最大整數(shù)M為3;
          (2)對于任意的s、t∈[
          1
          3
          ,2],都有f(s)≥g(t)成立等價于f(x)≥g(x)max
          由(I)知,在[
          1
          3
          ,2]上,g(x)max=g(2)=1
          ∴在[
          1
          3
          ,2]上,f(x)=
          a
          2x
          +xlnx≥1恒成立,等價于a≥2x-2x2lnx恒成立
          記h(x)=2x-2x2lnx,則h′(x)=2-4xlnx-x且h′(1)=0
          ∴當(dāng)
          1
          3
          <x<1時,h′(x)>0;當(dāng)1<x<2時,h′(x)<0
          ∴函數(shù)h(x)在(
          1
          3
          ,1)上單調(diào)遞增,在(1,2)上單調(diào)遞減,
          ∴h(x)max=h(1)=2
          ∴a≥2.
          點(diǎn)評:本題考查了利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,考查導(dǎo)數(shù)在研究函數(shù)問題中的應(yīng)用、由不等式恒成立求解參數(shù)范圍,考查了劃歸與轉(zhuǎn)化的思想,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          a-x2
          x
          +lnx  (a∈R , x∈[
          1
          2
           , 2])

          (1)當(dāng)a∈[-2,
          1
          4
          )
          時,求f(x)的最大值;
          (2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
          34
          的解集為
          (-∞,-2)
          (-∞,-2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
          2x
          )>3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
          (1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
          (2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
          f(x)   ,  x>0
          -f(x) ,    x<0
           給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
           

          查看答案和解析>>

          同步練習(xí)冊答案