日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓C的方程是(x-1)2+(y-1)2=4,直線l的方程為y=x+m,求:當m為何值時
          (1)直線平分圓;
          (2)直線與圓相切;
          (3)直線與圓有兩個公共點.
          分析:(1)根據(jù)題意,由圓的方程找出圓心坐標和圓的半徑r,直線平分圓即直線過圓心,所以把圓心坐標代入直線方程中即可求出m的值;
          (2)直線與圓相切時,圓心到直線的距離等于半徑,所以利用點到直線的距離公式表示出圓心到已知直線的距離d,讓d等于圓的半徑列出關于m的方程,求出方程的解即可得到符合題意m的值;
          (3)直線與圓有兩公共點即直線與圓相交,即圓心到直線的距離公式小于圓的半徑,所以利用點到直線的距離公式表示出圓心到直線的距離d,讓d小于圓的半徑列出關于m的不等式,求出不等式的解集即可得到滿足題意的m的范圍.
          解答:解:由圓的方程(x-1)2+(y-1)2=4,得到圓心坐標為(1,1),圓的半徑r=2,
          (1)當直線平分圓時,即直線過圓的直徑,把(1,1)代入y=x+m中,解得m=0;
          (2)當直線與圓相切時,圓心(1,1)到直線y=x+m的距離d=
          |-m|
          2
          =r=2,解得m=±2
          2
          ;
          (3)當直線與圓有兩個公共點即直線與圓相交時,圓心(1,1)到直線的距離d=
          |-m|
          2
          <r=2,解得:-2
          2
          ≤m≤2
          2

          所以,當m=0時,直線平分圓;當m=±2
          2
          時,直線與圓相切;當-2
          2
          ≤m≤2
          2
          時,直線與圓有兩個公共點.
          點評:此題考查學生掌握直線與圓相切及相交時所滿足的條件,是一道綜合題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知圓C的方程是(x-2)2+(y+3)2=1,則與圓C關于直線x+y=0對稱的圓的方程為
          (x-3)2+(y-2)2=1
          (x-3)2+(y-2)2=1

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•寶山區(qū)二模)已知點A(1,0),P1、P2、P3是平面直角坐標系上的三點,且|AP1|、|AP2|、|AP3|成等差數(shù)列,公差為d,d≠0.
          (1)若P1坐標為(1,-1),d=2,點P3在直線3x-y-18=0上時,求點P3的坐標;
          (2)已知圓C的方程是(x-3)2+(y-3)2=r2(r>0),過點A的直線交圓于P1、P3兩點,P2是圓C上另外一點,求實數(shù)d的取值范圍;
          (3)若P1、P2、P3都在拋物線y2=4x上,點P2的橫坐標為3,求證:線段P1P3的垂直平分線與x軸的交點為一定點,并求該定點的坐標.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知圓C的方程是(x-1)2+(y-1)2=4,直線l的方程為y=x+m,求:當m為何值時
          (1)直線平分圓;
          (2)直線與圓相切;
          (3)直線與圓有兩個公共點.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2013年上海市靜安、楊浦、青浦、寶山區(qū)高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

          已知點A(1,0),P1、P2、P3是平面直角坐標系上的三點,且|AP1|、|AP2|、|AP3|成等差數(shù)列,公差為d,d≠0.
          (1)若P1坐標為(1,-1),d=2,點P3在直線3x-y-18=0上時,求點P3的坐標;
          (2)已知圓C的方程是(x-3)2+(y-3)2=r2(r>0),過點A的直線交圓于P1、P3兩點,P2是圓C上另外一點,求實數(shù)d的取值范圍;
          (3)若P1、P2、P3都在拋物線y2=4x上,點P2的橫坐標為3,求證:線段P1P3的垂直平分線與x軸的交點為一定點,并求該定點的坐標.

          查看答案和解析>>

          同步練習冊答案