日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=|x+1|+|ax+1|,已知f(-1)=f(1),且f(-
          1
          a
          )=f(
          1
          a
          )
          (a∈R,且a≠0),函數(shù)g(x)=ax3+bx2+cx(b∈R,c為正整數(shù))有兩個不同的極值點(diǎn),且該函數(shù)圖象上取得極值的兩點(diǎn)A、B與坐標(biāo)原點(diǎn)O在同一直線上.
          (1)試求a、b的值;
          (2)若x≥0時,函數(shù)g(x)的圖象恒在函數(shù)f(x)圖象的下方,求正整數(shù)c的值.
          分析:(1)根據(jù)f(-1)=f(1),且f(-
          1
          a
          )=f(
          1
          a
          )
          (a∈R,且a≠0),求出a的值,再對函數(shù)g(x)求導(dǎo),根據(jù)函數(shù)g(x)=ax3+bx2+cx有兩個不同的極值點(diǎn),可以得到△>0,根據(jù)極值點(diǎn)共線A、B與坐標(biāo)原點(diǎn)O可解出b的值.
          (2)因?yàn)閤≥0時,函數(shù)g(x)的圖象恒在函數(shù)f(x)圖象的下方,值當(dāng)x≥0,g(x)恒小于f(x),所以g(x)的最大值恒小于f(x)的最小值,利用導(dǎo)數(shù)求出g(x)的最大值和f(x)的最小值,比較大小即可.
          解答:解:(1)∵f(-1)=f(1),∴|1-a|=2+|a+1|①
          f(-
          1
          a
          )=f(
          1
          a
          )

          |1-
          1
          a
          |=|
          1
          a
          +1|+2
          ,即|1-a|=2|a|+|a+1|②
          由①②得|a|=1,
          ∴a=±1.
          又∵a=1時,①、②不成立,
          故∴a=-1.
          ∴g(x)=-x3+bx2+cx,
          設(shè)x1、x2是函數(shù)g(x)的兩個極值點(diǎn),則x1、x2是方程g′(x)=-3x2+2bx+c=0的兩個根,△=4b2+12c>0(c為正整數(shù)),
          ∴x1+x2=
          2b
          3
          ,
          又∵A、O、B三點(diǎn)共線,
          -
          x
          3
          1
          +b
          x
          2
          1
          +cx1
          x1
          =
          -
          x
          3
          2
          +b
          x
          2
          2
          +cx2
          x2
          ,
          ∴(x1-x2)[-(x1+x2)+b]=0,
          又∵x1≠x2,
          ∴b=x1+x2=
          2b
          3
          ,
          ∴b=0.
          (2)∵x≥0時,f(x)min=2,
          由g′(x)=-3x2+c=0得x=
          c
          3
          ,可知g(x)在(0,
          c
          3
          )
          上單調(diào)遞增,在(
          c
          3
          ,+∞)

          上單調(diào)遞減,g(x)極大值=g(
          c
          3
          )=-
          c
          3
          c
          3
          +c
          c
          3
          =
          2c
          3
          c
          3

          ①由
          c
          3
          ≤1
          2c
          3
          c
          3
          <2
          得c<3,∴c的值為1或2.(∵c為正整數(shù))
          c
          3
          >1
          時,記g(x)在x∈[1,
          c
          3
          ]
          上切線斜率為2的切點(diǎn)的橫坐標(biāo)為x0,
          則由g′(x)=-3x2+c=2得x0=
          c-2
          3
          ,依題意得g(x0)<f(x0),∴-x03+cx0<2x0,  ∴x02>c-2,  ∴
          c-2
          3
          >c-2
          ,得c<2,與c>3矛盾.
          (或構(gòu)造函數(shù)h(x)=2x-g(x)在x≥1上恒正)
          綜上,所求c的值為1或2.
          點(diǎn)評:本題考查了利用導(dǎo)數(shù)判斷極值點(diǎn)的個數(shù),以及比較函數(shù)大小問題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實(shí)數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)的定義域?yàn)锳,若存在非零實(shí)數(shù)t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調(diào)函數(shù).如果定義域?yàn)閇0,+∞)的函數(shù)f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是( 。
          A、[-5,5]
          B、[-
          5
          ,
          5
          ]
          C、[-
          10
          10
          ]
          D、[-
          5
          2
          ,
          5
          2
          ]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
          f(-
          3
          4
          ) <f(
          15
          2
          )
          ;
          ②當(dāng)x∈[-1,0]時f(x)=x3+4x+3;
          ③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個無窮等差數(shù)列;
          ④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
          其中真命題的個數(shù)為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實(shí)數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案