【題目】在平面直角坐標(biāo)系xOy中,曲線:
,(
為參數(shù)),將曲線
上的所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的
,縱坐標(biāo)縮短為原來(lái)的
后得到曲線
,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
。
(1)求曲線的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線交于不同的兩點(diǎn)A,B,點(diǎn)M為拋物線
的焦點(diǎn),求
的值。
【答案】(1),
(2)
【解析】
(1)由曲線的參數(shù)方程得到普通方程
,經(jīng)變化后得到曲線
:
,化為極坐標(biāo)即可,利用兩角差的正弦公式可得直線
的極坐標(biāo)方程為
,進(jìn)而可化為直角坐標(biāo)方程;(2)寫(xiě)出直線
的參數(shù)方程,將直線
代入到圓的方程中,利用參數(shù)的幾何意義結(jié)合韋達(dá)定理即可得結(jié)果.
解:(1)將曲線:
(
為參數(shù)),消參得
,
經(jīng)過(guò)伸縮變換后得曲線
:
,
化為極坐標(biāo)方程為,
將直線的極坐標(biāo)方程為
,即
,
化為直角坐標(biāo)方程為.
(2)由題意知在直線
上,又直線
的傾斜角為
,
所以直線的參數(shù)方程為
(
為參數(shù))
設(shè)對(duì)應(yīng)的參數(shù)分別為
,
,
將直線的參數(shù)方程代入
中,得
.
因?yàn)?/span>在
內(nèi),所以
恒成立,
由韋達(dá)定理得
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)對(duì)任意的
,均有
,則稱函數(shù)具有性質(zhì)
.
(1)判斷下面兩個(gè)函數(shù)是否具有性質(zhì),并證明:①
(
);②
;
(2)若函數(shù)具有性質(zhì)
,且
(
,
),
①求證:對(duì)任意,有
;
②是否對(duì)任意,均有
?若有,給出證明,若沒(méi)有,給出反例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)習(xí)小組在研究性學(xué)習(xí)中,對(duì)晝夜溫差大小與綠豆種子一天內(nèi)出芽數(shù)之間的關(guān)系進(jìn)行研究.該小組在4月份記錄了1日至6日每天晝夜最高、最低溫度(如圖1),以及浸泡的100顆綠豆種子當(dāng)天內(nèi)的出芽數(shù)(如圖2).
根據(jù)上述數(shù)據(jù)作出散點(diǎn)圖,可知綠豆種子出芽數(shù) (顆)和溫差
(
)具有線性相關(guān)關(guān)系.
(1)求綠豆種子出芽數(shù) (顆)關(guān)于溫差
(
)的回歸方程
;
(2)假如4月1日至7日的日溫差的平均值為11,估計(jì)4月7日浸泡的10000顆綠豆種子一天內(nèi)的出芽數(shù).
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】本題滿分14分)
在數(shù)列中,
,且
.
(Ⅰ) 求,猜想
的表達(dá)式,并加以證明;
(Ⅱ) 設(shè),求證:對(duì)任意的自然數(shù)
,都有
;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求當(dāng)時(shí),
在點(diǎn)
處的切線方程;
(2)若關(guān)于x的不等式恒成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為
,短軸長(zhǎng)為4.
(1)求橢圓C的標(biāo)準(zhǔn)方程.
(2)設(shè)直線l過(guò)點(diǎn)(2,0)且與橢圓C相交于不同的兩點(diǎn)A、B,直線與x軸交于點(diǎn)D,E是直線
上異于D的任意一點(diǎn),當(dāng)
時(shí),直線BE是否恒過(guò)x軸上的定點(diǎn)?若過(guò),求出定點(diǎn)坐標(biāo),若不過(guò),請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某樂(lè)園按時(shí)段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每玩一次不超過(guò)小時(shí)收費(fèi)10元,超過(guò)
小時(shí)的部分每小時(shí)收費(fèi)
元(不足
小時(shí)的部分按
小時(shí)計(jì)算).現(xiàn)有甲、乙二人參與但都不超過(guò)
小時(shí),甲、乙二人在每個(gè)時(shí)段離場(chǎng)是等可能的。為吸引顧客,每個(gè)顧客可以參加一次抽獎(jiǎng)活動(dòng)。
(1) 用表示甲乙玩都不超過(guò)
小時(shí)的付費(fèi)情況,求甲、乙二人付費(fèi)之和為44元的概率;
(2)抽獎(jiǎng)活動(dòng)的規(guī)則是:顧客通過(guò)操作按鍵使電腦自動(dòng)產(chǎn)生兩個(gè)[0,1]之間的均勻隨機(jī)數(shù),并按如右所示的程序框圖執(zhí)行.若電腦顯示“中獎(jiǎng)”,則該顧客中獎(jiǎng);若電腦顯示“謝謝”,則不中獎(jiǎng),求顧客中獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,
,
,
,將
繞邊AB翻轉(zhuǎn)至
,使面
面ABC,D是BC的中點(diǎn),設(shè)Q是線段PA上的動(dòng)點(diǎn),則當(dāng)PC與DQ所成角取得最小值時(shí),線段AQ的長(zhǎng)度為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,底面
是菱形,
,
與
交于點(diǎn)
,
底面
,
為
的中點(diǎn),
.
(1)求證: 平面
;
(2)求異面直線與
所成角的余弦值;
(3)求與平面
所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com