【題目】已知數(shù)列{an}的前n項和Sn滿足Sn= an+n﹣3.
(1)求證:數(shù)列{an﹣1}是等比數(shù)列,并求{an}的通項公式;
(2)令cn=log3(a1﹣1)+log3(a2﹣1)+…+log3(an﹣1),對任意n∈N*, +
+…+
<k都成立,求k的最小值.
【答案】
(1)解: ①
②
①﹣②,得 ,即an=3an﹣1﹣2,
∴an﹣1=3(an﹣1﹣1),即 ,
由 可得,a1=4
∴{an﹣1}是以3為首項,3為公比的等比數(shù)列,則 ,
∴
(2)解:log3(an﹣1)=n,
∴ ,
恒成立,
∴k≥2,即kmin=2
【解析】(1)根據(jù)數(shù)列遞推公式得到an=3an﹣1﹣2,即可得到{an﹣1}是以3為首項,3為公比的等比數(shù)列,問題得以解決;(2)根據(jù)對數(shù)的運算性質(zhì)和等差數(shù)列的求和公式,得到cn= ,再根據(jù)裂項求和恒成立得到k≥2,問題得以解決.
【考點精析】掌握等比數(shù)列的通項公式(及其變式)是解答本題的根本,需要知道通項公式:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù)按從小到大順序排列,得到﹣1,0,4,x,7,14中位數(shù)為5,則這組數(shù)據(jù)的平均數(shù)為 , 方差為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知左、右焦點分別為的橢圓
與直線
相交于
兩點,使得四邊形
為面積等于
的矩形.
(1)求橢圓的方程;
(2)過橢圓上一動點
(不在
軸上)作圓
的兩條切線
,切點分別為
,直線
與橢圓
交于
兩點,
為坐標原點,求
的面積
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且bsinA= acosB.
(1)求角B的大;
(2)若b=3,sinC=2sinA,分別求a和c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面給出的關(guān)系式中正確的個數(shù)是( )
①
=
②
=
③ 2=|
|2
④(
)
=
(
)
⑤|
|≤
.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的各項都是正數(shù),且對任意n∈N* , 都有(an﹣1)(an+3)=4Sn , 其中Sn為數(shù)列{an}的前n項和.
(1)求證數(shù)列{an}是等差數(shù)列;
(2)若數(shù)列{ }的前n項和為Tn , 求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,以原點為極點, 軸的正半軸為極軸,以相同的長度單位建立極坐標系,已知直線
的極坐標方程為
,曲線
的極坐標方程為
.
(1)設(shè)為參數(shù),若
,求直線
的參數(shù)方程;
(2)已知直線與曲線
交于
,設(shè)
,且
,求實數(shù)
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com