【題目】如圖,在四棱錐中,
平面
,四邊形
是菱形,
,
,且
交于點(diǎn)
,
是
上任意一點(diǎn).
(1)求證;
(2)已知二面角的余弦值為
,若
為
的中點(diǎn),求
與平面
所成角的正弦值.
【答案】(1)見解析;(2)
【解析】
(1)利用線面垂直的性質(zhì)得,利用菱形的性質(zhì)得
,利用線面垂直的判定定理得
平面
,利用線面垂直得到線線垂直,從而得到
;
(2)分別以,
,
為
軸,
軸,
軸的正方向建立空間直角坐標(biāo)系,設(shè)
,用坐標(biāo)表示點(diǎn),求得平面
的法向量為
,平面
的法向量為
,根據(jù)二面角
的余弦值為
,可求出
,從而得到點(diǎn)
的坐標(biāo),再利用向量的夾角公式,即可求得
與平面
所成角的正弦值.
(1)∵平面
,∴
又∵四邊形為菱形,∴
又,∴
平面
平面
,∴
(2)連,在
中,
,∴
平面
分別以,
,
為
軸,
軸,
軸的正方向建立空間直角坐標(biāo)系.
設(shè),則
,
,
,
,
.
由(1)知,平面的一個(gè)法向量為
設(shè)平面 的一個(gè)法向量為
,則由
即,令
,則
因二面角的余弦值為
,
∴,∴
設(shè)與平面
所成角為
,∵
,
,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱的底面為菱形,
底面
,
,
,
,
分別為
,
的中點(diǎn).
(Ⅰ)求證:平面
;
(Ⅱ)求證:平面平面
;
(Ⅲ)若,求異面直線
與
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是梯形,四邊形
是矩形,且平面
平面
,
,
,
是線段
上的動(dòng)點(diǎn).
(1)試確定點(diǎn)的位置,使
平面
,并說明理由;
(2)在(1)的條件下,求平面與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】武漢市攝影協(xié)會(huì)準(zhǔn)備在2020年1月舉辦主題為“我們都是追夢(mèng)人”攝影圖片展,通過平常人的鏡頭記錄國強(qiáng)民富的幸福生活,攝影協(xié)會(huì)收到了來自社會(huì)各界的大量作品,打算從眾多照片中選取100張照片展出,其參賽者年齡集中在之間,根據(jù)統(tǒng)計(jì)結(jié)果,做出頻率分布直方圖如圖:
(1)求頻率直方圖中的值,并根據(jù)頻率直方圖,求這100位攝影者年齡的中位數(shù);
(2)為了展示不同年齡作者眼中的幸福生活,攝影協(xié)會(huì)按照分層抽樣的方法,計(jì)劃從這100件照片中抽出20個(gè)最佳作品,并邀請(qǐng)相應(yīng)作者參加“講述照片背后的故事”座談會(huì).
①在答題卡上的統(tǒng)計(jì)表中填出每組相應(yīng)抽取的人數(shù):
年齡 | |||||
人數(shù) |
②若從年齡在的作者中選出2人把這些圖片和故事整理成冊(cè),求這2人中至少有1人的年齡在
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,
.
(Ⅰ)當(dāng)時(shí),求曲線
在
處的切線方程;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),若對(duì)于任意
,總存在
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1+a2+a3+…+an=n-an,(n=1,2,3,…)
(Ⅰ)求證:數(shù)列{an-1}是等比數(shù)列;
(Ⅱ)令bn=(2-n)(an-1)(n=1,2,3,…),如果對(duì)任意n∈N*,都有bn+t≤t2,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是單位正方體
的對(duì)角面
上的一動(dòng)點(diǎn),過點(diǎn)
作垂直于平面
的直線,與正方體的側(cè)面相交于
、
兩點(diǎn),則
的面積的最大值為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人們經(jīng)濟(jì)收入的不斷增加,個(gè)人購買家庭轎車已不再是一種時(shí)尚,車的使用費(fèi)用,尤其是隨著使用年限的增多,所支出的費(fèi)用到底會(huì)增長多少,一直是購車一族非常關(guān)心的問題,某汽車銷售公司做了一次抽樣調(diào)查,并統(tǒng)計(jì)得出2009年出售的某款車的使用年限(2009年記
)與所支出的總費(fèi)用
(萬元)有如表的數(shù)據(jù)資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
總費(fèi)用 | 2.5 | 3.5 | 5.5 | 6.5 | 7.0 |
(1)求線性回歸方程;
(2)若這款車一直使用到2020年,估計(jì)使用該款車的總費(fèi)用是多少元?
線性回歸方程中斜率和截距用最小二乘法估計(jì)計(jì)算公式如下:
,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com