日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知三角形ABC的兩個(gè)頂點(diǎn)A(-1,5)和B(0,-1),又知∠C的平分線所在的直線方程為2x-3y+6=0,求直線AB、BC方程.
          分析:由直線方程的兩點(diǎn)式,可求出直線AB的方程,再化成一般式即可.設(shè)CD是△ABC中角C的平分線,點(diǎn)B關(guān)于CD的對(duì)稱點(diǎn)為B',可得直線AB'即為直線AC.利用求對(duì)稱的方法建立方程組,解出B'(-
          36
          13
          ,
          41
          13
          ),結(jié)合直線方程的兩點(diǎn)式,得出直線AC的方程,聯(lián)解AC、CD的方程,算出它們的交點(diǎn)C(-
          279
          26
          ,-
          67
          13
          ),由此不難算出直線BC的一般式方程.
          解答:解:設(shè)CD是△ABC中角C的平分線,點(diǎn)B關(guān)于CD的對(duì)稱點(diǎn)為B',
          則點(diǎn)B'落在AC所在直線上,直線AB'即為直線AC
          設(shè)點(diǎn)B'(m,n),可得
          kBB′=
          n-(-1)
          m-0
          =-
          1
          2
          3
          m+0
          2
          -3×
          n-1
          2
          +6=0

          解之得m=-
          36
          13
          ,n=
          41
          13
          ,可得B'(-
          36
          13
          41
          13

          ∴直線AB'方程為
          y-5
          41
          13
          -5
          =
          x+1
          -
          36
          13
          +1
          ,化簡(jiǎn)得24x-23y+139=0
          即直線AC方程為24x-23y+139=0,由
          24x-23y+139=0
          2x-3y+6=0
          聯(lián)解得C(-
          279
          26
          ,-
          67
          13

          因此,直線BC的斜率kBC=
          -1+
          67
          13
          0+
          279
          26
          =
          12
          31
          ,可得直線BC方程為y=
          12
          31
          x-1,化成一般式為12x-31y-31=0
          由直線方程的兩點(diǎn)式,得直線AB方程為:
          y-5
          -1-5
          =
          x+1
          0+1
          ,整理得6x+y+1=0
          綜上所述,得直線AB方程為6x+y+1=0,直線BC方程為12x-31y-31=0.
          點(diǎn)評(píng):本題給出三角形的兩個(gè)頂點(diǎn)坐標(biāo)和第三個(gè)角的平分線方程,求它的兩條邊所在直線方程,著重考查了直線的相互關(guān)系、直線方程的幾種形式及其互化等知識(shí),屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知三角形△ABC的兩頂點(diǎn)為B(-2,0),C(2,0),它的周長(zhǎng)為10,求頂點(diǎn)A軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知三角形ABC的兩頂點(diǎn)A、B分別是曲線x2+5y2=5的左右焦點(diǎn),且內(nèi)角滿足
          sinA
          sinB
          =
          2
          -cosA
          2
          +cosB

          (1)求頂點(diǎn)C的軌跡方程E;
          (2)若x軸上有兩點(diǎn)M(2,0),N(1,0),過N的直線與曲線E的交點(diǎn)是D、E.求kDM+kEM的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市松江二中高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

          已知三角形ABC的兩個(gè)頂點(diǎn)A(-1,5)和B(0,-1),又知∠C的平分線所在的直線方程為2x-3y+6=0,求直線AB、BC方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2007年江蘇省南通市高三數(shù)學(xué)押題卷(35題)(解析版) 題型:解答題

          已知三角形ABC的兩頂點(diǎn)A、B分別是曲線x2+5y2=5的左右焦點(diǎn),且內(nèi)角滿足
          (1)求頂點(diǎn)C的軌跡方程E;
          (2)若x軸上有兩點(diǎn)N(1,0),過N的直線與曲線E的交點(diǎn)是D、E.求kDM+kEM的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案