日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知等差數(shù)列{an}的前n項(xiàng)和為Sn=pn2-2n+q(p,q∈R),n∈N+
          (Ⅰ)求的q值;
          (Ⅱ)若a1與a5的等差中項(xiàng)為18,bn滿足an=2log2bn,求數(shù)列{bn}的前n和Tn
          分析:(Ⅰ)先令n=1得到a1,然后當(dāng)n≥2時(shí),利用an=Sn-sn-1得到an的通項(xiàng)公式,因?yàn)閍1符合n≥2時(shí),an的形式,把n=1代入求出q即可;
          (Ⅱ)a1與a5的等差中項(xiàng)為18得a3=
          a1+a5
          2
          ,求出a3,代入通項(xiàng)公式求出p的值,得到an,把a(bǔ)n代入到an=2log2bn,得到bn的通項(xiàng)公式,發(fā)現(xiàn){bn}是首項(xiàng)為2,公比為16的等比數(shù)列,利用等比數(shù)列的求和公式求出即可.
          解答:解:(Ⅰ)當(dāng)n=1時(shí),a1=S1=p-2+q
          當(dāng)n≥2時(shí),an=Sn-Sn-1=pn2-2n+q-p(n-1)2+2(n-1)-q=2pn-p-2
          ∵{an}是等差數(shù)列,a1符合n≥2時(shí),an的形式,
          ∴p-2+q=2p-p-2,
          ∴q=0
          (Ⅱ)∵a3=
          a1+a5
          2
          ,由題意得a3=18
          又a3=6p-p-2,∴6p-p-2=18,解得p=4
          ∴an=8n-6
          由an=2log2bn,得bn=24n-3
          b1=2,
          bn+1
          bn
          =
          24(n+1)-3
          24n-3
          =24=16
          ,即{bn}是首項(xiàng)為2,公比為16的等比數(shù)列
          ∴數(shù)列{bn}的前n項(xiàng)和Tn=
          2(1-16n)
          1-16
          =
          2
          15
          (16n-1)
          點(diǎn)評(píng):考查學(xué)生會(huì)利用等差數(shù)列的前n+1項(xiàng)的和與前n項(xiàng)的和相減得到等差數(shù)列的通項(xiàng)公式,以及會(huì)求等比數(shù)列的前n項(xiàng)的和.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
          (1)求{an}的通項(xiàng)公式;
          (2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
          (1)求數(shù)列{an}的通項(xiàng)公式;     
          (2)求數(shù)列{|an|}的前n項(xiàng)和;
          (3)求數(shù)列{
          an2n-1
          }的前n項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)若{an}為遞增數(shù)列,請(qǐng)根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案