已知橢圓C:的左、右焦點(diǎn)分別為
,離心率
,連接橢圓的四個(gè)頂點(diǎn)所得四邊形的面積為
.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)是直線
上的不同兩點(diǎn),若
,求
的最小值.
(1);(2)
的最小值是
.
解析試題分析:(1)由離心率,四項(xiàng)點(diǎn)所成的四邊形面積,可得
的值. (2)由橢圓的標(biāo)準(zhǔn)方程可得
點(diǎn)的坐標(biāo). 設(shè)
.利用坐標(biāo)運(yùn)算,得出
,又根據(jù)對(duì)稱性,不妨
,則
.
試題解析:
解:(1)由題意得: 2分
解得:4分 所以橢圓的標(biāo)準(zhǔn)方程為:
5分
(2)由(1)知,的坐標(biāo)分別為
,設(shè)直線
上的不同兩點(diǎn)
的坐標(biāo)分別為
,則
、
,由
得
, 8分
即,不妨設(shè)
,則
, 11分
當(dāng)時(shí)取等號(hào),所以
的最小值是
12分
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程與幾何性質(zhì),向量的坐標(biāo)運(yùn)算,基本不等式求最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,已知?jiǎng)狱c(diǎn)
到點(diǎn)
的距離為
,到
軸的距離為
,且
.
(1)求點(diǎn)的軌跡
的方程;
(2) 若直線斜率為1且過(guò)點(diǎn)
,其與軌跡
交于點(diǎn)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率
,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于不同的兩點(diǎn)
,已知點(diǎn)
的坐標(biāo)為
,點(diǎn)
在線段
的垂直平分線上,且
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
我們將不與拋物線對(duì)稱軸平行或重合且與拋物線只有一個(gè)公共點(diǎn)的直線稱為拋物線的切線,這個(gè)公共點(diǎn)稱為切點(diǎn).解決下列問(wèn)題:
已知拋物線上的點(diǎn)
到焦點(diǎn)的距離等于4,直線
與拋物線相交于不同的兩點(diǎn)
、
,且
(
為定值).設(shè)線段
的中點(diǎn)為
,與直線
平行的拋物線的切點(diǎn)為
..
(1)求出拋物線方程,并寫(xiě)出焦點(diǎn)坐標(biāo)、準(zhǔn)線方程;
(2)用、
表示出
點(diǎn)、
點(diǎn)的坐標(biāo),并證明
垂直于
軸;
(3)求的面積,證明
的面積與
、
無(wú)關(guān),只與
有關(guān).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)在拋物線
上,直線
(
,且
)與拋物線
,相交于
、
兩點(diǎn),直線
、
分別交直線
于點(diǎn)
、
.
(1)求的值;
(2)若,求直線
的方程;
(3)試判斷以線段為直徑的圓是否恒過(guò)兩個(gè)定點(diǎn)?若是,求這兩個(gè)定點(diǎn)的坐標(biāo);若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線C的頂點(diǎn)在原點(diǎn),開(kāi)口向右,過(guò)焦點(diǎn)且垂直于拋物線對(duì)稱軸的弦長(zhǎng)為2,過(guò)C上一點(diǎn)A作兩條互相垂直的直線交拋物線于P,Q兩點(diǎn).
(1)若直線PQ過(guò)定點(diǎn),求點(diǎn)A的坐標(biāo);
(2)對(duì)于第(1)問(wèn)的點(diǎn)A,三角形APQ能否為等腰直角三角形?若能,試確定三角形APD的個(gè)數(shù);若不能,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
巳知橢圓的離心率是
.
⑴若點(diǎn)P(2,1)在橢圓上,求橢圓的方程;
⑵若存在過(guò)點(diǎn)A(1,0)的直線,使點(diǎn)C(2,0)關(guān)于直線
的對(duì)稱點(diǎn)在橢圓上,求橢圓的焦距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,已知、
、
是長(zhǎng)軸長(zhǎng)為
的橢圓
上的三點(diǎn),點(diǎn)
是長(zhǎng)軸的一個(gè)端點(diǎn),
過(guò)橢圓中心
,且
,
.
(1)求橢圓的方程;
(2)在橢圓上是否存點(diǎn)
,使得
?若存在,有幾個(gè)(不必求出
點(diǎn)的坐標(biāo)),若不存在,請(qǐng)說(shuō)明理由;
(3)過(guò)橢圓上異于其頂點(diǎn)的任一點(diǎn)
,作圓
的兩條線,切點(diǎn)分別為
、
,,若直線
在
軸、
軸上的截距分別為
、
,證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:(
)的短軸長(zhǎng)為2,離心率為
(1)求橢圓C的方程
(2)若過(guò)點(diǎn)M(2,0)的引斜率為的直線與橢圓C相交于兩點(diǎn)G、H,設(shè)P為橢圓C上一點(diǎn),且滿足
(
為坐標(biāo)原點(diǎn)),當(dāng)
時(shí),求實(shí)數(shù)
的取值范圍?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com