日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          【題目】已知正項數列的首項,其前項和為,且的等比中項是,數列滿足:.

          (1),并求數列的通項公式;

          (2),,證明:.

          【答案】(1),,. (2)見解析

          【解析】

          (1)由題可得,再根據通項與前項和的關系求得遞推公式,再根據的值求解通項即可.

          (2)根據通項與前項和的關系求出的通項公式,再代入可得再利用裂項放縮法或者利用數學歸納法證明即可.

          (1)依題意,

          ,,.

          于是有,,兩式相減可得.

          約去正項可得.

          ,,所以是以1為首項,1為公差的等差數列.

          .

          (2)依題意,

          時,,

          兩式相減即得.

          另外亦符合上式,所以.

          證一:

          所以.

          證二:(1時命題成立.

          2)假設時命題成立,即

          那么

          即當時命題也成立.

          綜合(1)(2)對任意命題均成立.

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          【題目】若實數滿足,則稱為函數的不動點.

          (1)求函數的不動點;

          (2)設函數,其中為實數.

          ① 若時,存在一個實數,使得既是的不動點,又是 的不動點(是函數的導函數),求實數的取值范圍;

          ② 令,若存在實數,使, 成各項都為正數的等比數列,求證:函數存在不動點.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知矩形中點,沿直線翻折成,直線與平面所成角最大時,線段長是( )

          A.B.C.D.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知函數,.

          1)證明:不等式恒成立;

          2)證明:存在兩個極值點,

          附:,,.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,已知拋物線的焦點為,準線與軸的交點為.過點的直線與拋物線相交于、兩點,、分別與軸相交于兩點,當軸時,

          1)求拋物線的方程;

          2)設的面積為,面積為,求的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知為橢圓上的兩點,滿足,其中,分別為左右焦點.

          1)求的最小值;

          2)若,設直線的斜率為,求的值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,在三棱錐中,是正三角形,是等腰直角三角形,,.

          1)證明:平面平面;

          2)設,點的中點,求三棱錐的體積.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】設函數.

          1)若,討論的零點個數;

          2)證明:.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】為抗擊新型冠狀病毒,普及防護知識,某校開展了疫情防護網絡知識競賽活動.現從參加該活動的學生中隨機抽取了100名學生,將他們的比賽成績(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.

          1)求的值,并估計這100名學生的平均成績(同一組中的數據用該組區(qū)間的中點值為代表);

          2)在抽取的100名學生中,規(guī)定:比賽成績不低于80分為優(yōu)秀,比賽成績低于80分為非優(yōu)秀”.請將下面的2×2列聯表補充完整,并判斷是否有99%的把握認為比賽成績是否優(yōu)秀與性別有關?

          優(yōu)秀

          非優(yōu)秀

          合計

          男生

          40

          女生

          50

          合計

          100

          參考公式及數據:.

          0.05

          0.01

          0.005

          0.001

          3.841

          6.635

          7.879

          10.828

          查看答案和解析>>

          同步練習冊答案