【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,直線
的參數(shù)方程為
(
為參數(shù)),圓
的極坐標(biāo)方程為
.
(1)求直線的普通方程與圓
的直角坐標(biāo)方程;
(2)設(shè)曲線與直線
交于
兩點(diǎn),若
點(diǎn)的直角坐標(biāo)為
,求
的值.
【答案】(1),
(2)
【解析】試題分析:(1)根據(jù)加減消元法將直線的參數(shù)方程化為普通方程,根據(jù)
將圓
的極坐標(biāo)方程化為直角坐標(biāo)方程,(2)先化直線參數(shù)方程標(biāo)準(zhǔn)形式,代入圓
的直角坐標(biāo)方程,根據(jù)參數(shù)幾何意義得
,再根據(jù)韋達(dá)定理求值.
試題解析: 解:(1)直線的普通方程為
,
,
所以
所以曲線的直角坐標(biāo)方程為
.
(2)點(diǎn)在直線
上,且在圓
內(nèi),由已知直線
的參數(shù)方程是
(
為參數(shù))
代入,
得,設(shè)兩個實根為
,則
,即
異號
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD⊥AB,∠CAB=60°,∠BCD=120°,AC=2.
(1)若∠ABC=30°,求DC;
(2)記∠ABC=θ,當(dāng)θ為何值時,△BCD的面積有最小值?求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象與
軸的交點(diǎn)中,相鄰兩個交點(diǎn)之間的距離為
,且圖象過點(diǎn)
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)將函數(shù)的圖象向右平移
個單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)
的圖象,若關(guān)于
的方程
,在區(qū)間
上有且只有一個實數(shù)解,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】紅隊隊員甲、乙、丙與藍(lán)隊隊員,
,
進(jìn)行圍棋比賽,甲對
,乙對
,丙對
各一盤.已知甲勝
、乙勝
、丙勝
的概率分別為0.6,0.5,0.5,假設(shè)各盤比賽結(jié)果相互獨(dú)立,則紅隊至少兩名隊員獲勝的概率是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
為常數(shù).
若曲線
在
處的切線在兩坐標(biāo)軸上的截距相等,求
的值;
若對
,都有
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,點(diǎn)
到兩點(diǎn)
的距離之和為4,設(shè)點(diǎn)
的軌跡為
,直線
與
交于
兩點(diǎn)。
(Ⅰ)寫出的方程;
(Ⅱ)若,求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)的圖像在
處的切線
垂直于直線
,求實數(shù)
的值及直線
的方程;
(2)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com