日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知曲線C:y=4x,Cn:4x+n(n∈N*),從C上的點(diǎn)Qn(xn,yn)作x軸的垂線,交Cn于點(diǎn)Pn,再從點(diǎn)Pn作y軸的垂線,交C于點(diǎn)Qn+1(xn+1,yn+1),設(shè)x1=1,an=xn+1-xn,

          (1)求數(shù)列{xn}的通項(xiàng)公式;

          (2)記,數(shù)列{cn}的前n項(xiàng)和為Tn,求證:;

          (3)若已知,記數(shù)列{an}的前n項(xiàng)和為An,數(shù)列{dn}的前n項(xiàng)和為Bn,試比較An的大。

          答案:
          解析:

            解:(1)依題意點(diǎn)的坐標(biāo)為,

            

            

            (2),

            所以:(5分)

            當(dāng)時,

            ,

            (當(dāng)時取“”).(8分)

            (3),,

            由

            知

            ,而,所以可得

            于是

            

             10分

            當(dāng);

            當(dāng)時,

            當(dāng)時,

            下面證明:當(dāng)時,

            證法一:(利用組合恒等式放縮)

            當(dāng)時,

            

            ∴當(dāng)時, 13分

            證法二:(數(shù)學(xué)歸納法)證明略

            證法三:(函數(shù)法)

            ∵時,

            構(gòu)造函數(shù)

            

            ∴當(dāng)時,

            ∴在區(qū)間是減函數(shù),

            ∴當(dāng)時,

            

            ∴

            在區(qū)間是減函數(shù),

            ∴當(dāng)時,

            

            從而時,,

            即

            ∴當(dāng)時,


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:山東濟(jì)寧梁山二中2011-2012學(xué)年高二12月月考數(shù)學(xué)理科試題 題型:044

          已知M(4,0),N(1,0),若動點(diǎn)P滿足,P點(diǎn)的軌跡為曲線C.

          (Ⅰ)求曲線C的方程;

          (Ⅱ)試確定m的取值范圍,使得對于直線l:y=4x+m,曲線C上總有不同的兩點(diǎn)關(guān)于直線l對稱.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:101網(wǎng)校同步練習(xí) 高二數(shù)學(xué) 蘇教版(新課標(biāo)·2004年初審) 蘇教版 題型:044

          已知曲線y=-x2=4x上有兩點(diǎn)A(4,0)、B(2,4).

          (1)求割線AB的斜率kAB及直線AB的方程;

          (2)在曲線上是否存在點(diǎn)C,使過C點(diǎn)的切線與直線AB平行?如果存在,求出點(diǎn)C的坐標(biāo);如果不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:福建省南安一中2012屆高三上學(xué)期期中考試數(shù)學(xué)文科試題 題型:022

          已知曲線Cy=lnx-4x與直線x=1交于一點(diǎn)P,那么曲線C在點(diǎn)P處的切線方程是_______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(新課標(biāo)1卷解析版) 題型:解答題

          (本小題滿分共12分)已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d),若曲線y=f(x)和曲線y=g(x)都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2

          (Ⅰ)求a,b,c,d的值

          (Ⅱ)若x≥-2時,f(x)≤kg(x),求k的取值范圍。

           

          查看答案和解析>>

          同步練習(xí)冊答案