日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】湖南省某自來水公司每個月(記為一個收費周期)對用戶收一次水費,收費標(biāo)準(zhǔn)如下:當(dāng)每戶用水量不超過30噸時,按每噸2元收取;當(dāng)該用戶用水量超過30噸但不超過50噸時,超出部分按每噸3元收;當(dāng)該用戶用水量超過50噸時,超出部分按每噸4元收取。

          (1)記某用戶在一個收費周期的用水量為噸,所繳水費為元,寫出關(guān)于的函數(shù)解析式;

          (2)在某一個收費周期內(nèi),若甲、乙兩用戶所繳水費的和為214元,且甲、乙兩用戶用水量之比為3:2,試求出甲、乙兩用戶在該收費周期內(nèi)各自的用水量.

          【答案】(1); (2)甲乙用水量分別為54噸和36噸.

          【解析】

          根據(jù)題意列出分段函數(shù)即可

          先分析甲乙兩用戶的用水量是否超過噸,再分別設(shè)出甲乙的用水量,根據(jù)解析式列方程計算在收費周期甲乙的用水量和水費即可

          (1)由題意知,

          (2)假設(shè)乙用戶用水量為噸,則甲用戶用水量為噸,則甲乙所繳水費之和為

          ∴甲乙兩用戶用水量都超過噸。

          設(shè)甲用水噸,乙用水噸,

          若甲乙用水都超過則有:,解得:,但;

          若甲乙用水都在30到50,則, 解得:,但;

          因此甲用水超過50,乙用水在30到50,故, 解得:;

          綜上甲乙用水量分別為54噸和36噸。

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)是定義域為R的偶函數(shù),當(dāng)時,f(x)=x2-2x

          (1)求出函數(shù)f(x)在R上的解析式;

          (2)畫出函數(shù)f(x)的圖象,并根據(jù)圖象寫出f(x)的單調(diào)區(qū)間.

          (3)求使f(x)=1時的x的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的一個焦點為,離心率為.點為圓上任意一點, 為坐標(biāo)原點.

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)設(shè)直線經(jīng)過點且與橢圓相切, 與圓相交于另一點,點關(guān)于原點的對稱點為,證明:直線與橢圓相切.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ax2+(b﹣1)x+1(a,b∈R,a>0).
          (1)若f(1)=0,且對任意x∈R,都有f(2﹣x)=f(2+x),求f(x)的解析式;
          (2)已知x1 , x2為函數(shù)f(x)的兩個零點,且x2﹣x1=2,當(dāng)x∈(x1 , x2)時,g(x)=﹣f(x)+2(x2﹣x)的最大值為,當(dāng)a≥2時,求h(a)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,四棱錐中,底面為菱形,且直線又棱 的中點,

          (Ⅰ) 求證:直線

          (Ⅱ) 求直線與平面的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左右焦點分別為,上頂點為,若直線的斜率為1,且與橢圓的另一個交點為, 的周長為.

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)過點的直線(直線的斜率不為1)與橢圓交于兩點,點在點的上方,若,求直線的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】幾位同學(xué)在研究函數(shù) 時,給出了下面幾個結(jié)論:

          的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是;

          ②若,則一定有;

          ③函數(shù)的值域為;

          ④若規(guī)定,,則對任意恒成立.

          上述結(jié)論中正確的是____

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓的面積為,且與軸、軸分別交于兩點.

          1)求圓的方程;

          (2)若直線與線段相交,求實數(shù)的取值范圍;

          (3)試討論直線與(1)小題所求圓的交點個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù))在其定義域內(nèi)有兩個不同的極值點.

          (Ⅰ)求實數(shù)的取值范圍;

          (Ⅱ)記兩個極值點分別為 ),求證: .

          查看答案和解析>>

          同步練習(xí)冊答案