日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓O:,點P是橢圓C:上一點,過點P作圓O的兩條切線PA、PB,A、B為切點,直線AB分別交軸、軸于點M、N,則的面積的最小值是

          A.          B.1             C.         D.

           

          【答案】

          A

          【解析】令,由切線公式可得直線PA:,直線PB:,所以P滿足,所以可得直線AB的方程為

          ①.由①式得,所以OMN面積

          帶入②得則,所以當sin2β=1時面積最小,

          此時Smin=.

           

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知橢C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的焦點為F1,F(xiàn)2,P是橢圓上任意一點,若以坐標原點為圓心,橢圓短軸長為直徑的圓經過橢圓的焦點,且△PF1F2的周長為4+2
          2

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設直線的l是圓O:x2+y2=
          4
          3
          上動點P(x0,y0)(x0-y0≠0)處的切線,l與橢圓C交于不同的兩點Q,R,證明:∠QOR的大小為定值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,F(xiàn)1,F(xiàn)2為橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的左、右焦點,D,E是橢圓的兩個頂點,橢圓的離心率e=
          3
          2
          S△DEF2=1-
          3
          2
          .若點M(x0,y0)在橢圓C上,則點N(
          x0
          a
          y0
          b
          )稱為點M的一個“橢點”.直線l與橢圓交于A,B兩點,A,B兩點的“橢點”分別為P,Q,已知以PQ為直徑的圓經過坐標原點O.
          (1)求橢圓C的標準方程;
          (2)△AOB的面積是否為定值?若為定值,試求出該定值;若不為定值,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012-2013學年遼寧省本溪一中高三(上)第三次月考數(shù)學試卷(理科)(解析版) 題型:解答題

          已知橢C:+=1(a>b>0)的焦點為F1,F(xiàn)2,P是橢圓上任意一點,若以坐標原點為圓心,橢圓短軸長為直徑的圓經過橢圓的焦點,且△PF1F2的周長為4
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設直線的l是圓O:x2+y2=上動點P(x,y)(x-y≠0)處的切線,l與橢圓C交于不同的兩點Q,R,證明:∠QOR的大小為定值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012-2013學年遼寧省本溪一中高三(上)第三次月考數(shù)學試卷(理科)(解析版) 題型:解答題

          已知橢C:+=1(a>b>0)的焦點為F1,F(xiàn)2,P是橢圓上任意一點,若以坐標原點為圓心,橢圓短軸長為直徑的圓經過橢圓的焦點,且△PF1F2的周長為4
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設直線的l是圓O:x2+y2=上動點P(x,y)(x-y≠0)處的切線,l與橢圓C交于不同的兩點Q,R,證明:∠QOR的大小為定值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012-2013學年湖北省荊州市公安三中高三(上)數(shù)學積累測試卷11(解析版) 題型:解答題

          已知橢C:+=1(a>b>0)的焦點為F1,F(xiàn)2,P是橢圓上任意一點,若以坐標原點為圓心,橢圓短軸長為直徑的圓經過橢圓的焦點,且△PF1F2的周長為4
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設直線的l是圓O:x2+y2=上動點P(x,y)(x-y≠0)處的切線,l與橢圓C交于不同的兩點Q,R,證明:∠QOR的大小為定值.

          查看答案和解析>>

          同步練習冊答案