日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在直角坐標(biāo)系中,已知圓C的圓心坐標(biāo)為(2,0),半徑為 ,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.,直線l的參數(shù)方程為: (t為參數(shù)).
          (1)求圓C和直線l的極坐標(biāo)方程;
          (2)點(diǎn)P的極坐標(biāo)為(1, ),直線l與圓C相交于A,B,求|PA|+|PB|的值.

          【答案】
          (1)解:圓C的直角坐標(biāo)方程為(x﹣2)2+y2=2,

          代入圓C得:(ρcosθ﹣2)22sin2θ=2

          化簡(jiǎn)得圓C的極坐標(biāo)方程:ρ2﹣4ρcosθ+2=0

          得x+y=1,∴l(xiāng)的極坐標(biāo)方程為ρcosθ+ρsinθ=1


          (2)解:由 得點(diǎn)P的直角坐標(biāo)為P(0,1),

          ∴直線l的參數(shù)的標(biāo)準(zhǔn)方程可寫成

          代入圓C得:

          化簡(jiǎn)得:

          ,∴t1<0,t2<0


          【解析】(1) 代入圓C得圓C的極坐標(biāo)方程;直線l的參數(shù)方程轉(zhuǎn)化成普通方程,進(jìn)而求得直線l的極坐標(biāo)方程;(2)將直線l的參數(shù)方程代入圓的方程,求得關(guān)于t的一元二次方程,令A(yù),B對(duì)應(yīng)參數(shù)分別為t1 , t2 , 根據(jù)韋達(dá)定理、直線與圓的位置關(guān)系,即可求得|PA|+|PB|的值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知三棱柱ABC﹣A1B1C1的底面是銳角三角形,則存在過(guò)點(diǎn)A的平面(

          A.與直線BC和直線A1B1都平行
          B.與直線BC和直線A1B1都垂直
          C.與直線BC平行且直線A1B1垂直
          D.與直線BC和直線A1B1所成角相等

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】給出下列命題: ①若數(shù)列{an}為等差數(shù)列,Sn為其前n項(xiàng)和,則Sn , S2n﹣Sn , S3n﹣S2n是等差數(shù)列;
          ②若數(shù)列{an}為等比數(shù)列,Sn為其前n項(xiàng)和,則Sn , S2n﹣Sn , S3n﹣S2n是等比數(shù)列;
          ③若數(shù)列{an},{bn}均為等差數(shù)列,則數(shù)列{an+bn}為等差數(shù)列;
          ④若數(shù)列{an},{bn}均為等比數(shù)列,則數(shù)列{anbn}為等比數(shù)列
          其中真命題的個(gè)數(shù)為(
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校開(kāi)設(shè)的校本課程分別有人文科學(xué)、自然科學(xué)、藝術(shù)體育三個(gè)課程類別,每種課程類別開(kāi)設(shè)課程數(shù)及學(xué)分設(shè)定如下表所示:

          人文科學(xué)類

          自然科學(xué)類

          藝術(shù)體育類

          課程門數(shù)

          4

          4

          2

          每門課程學(xué)分

          2

          3

          1

          學(xué)校要求學(xué)生在高中三年內(nèi)從中選修3門課程,假設(shè)學(xué)生選修每門課程的機(jī)會(huì)均等.
          (Ⅰ)甲至少選1門藝術(shù)體育類課程,同時(shí)乙至多選1門自然科學(xué)類課程的概率為多少?
          (Ⅱ)求甲選的3門課程正好是7學(xué)分的概率;
          (Ⅲ)設(shè)甲所選3門課程的學(xué)分?jǐn)?shù)為X,寫出X的分布列,并求出X的數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù)g(x)=log (x2+ bx+ )的單調(diào)遞增區(qū)間為(

          A.[﹣2,+∞)
          B.(﹣∞,﹣2)
          C.(3,+∞)
          D.[3,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知雙曲線 (a>0,b>0)的左、右焦點(diǎn)分別為F1、F2 , 過(guò)點(diǎn)F1且垂直于x軸的直線與該雙曲線的左支交于A、B兩點(diǎn),AF2、BF2分別交y軸于P、Q兩點(diǎn),若△PQF2的周長(zhǎng)為12,則ab取得最大值時(shí)該雙曲線的離心率為(
          A.
          B.
          C.2
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購(gòu)買的險(xiǎn)種.若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如表:

          交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

          浮動(dòng)因素

          浮動(dòng)比率

          A1

          上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

          下浮10%

          A2

          上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

          下浮20%

          A3

          上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

          下浮30%

          A4

          上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

          0%

          A5

          上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

          上浮10%

          A6

          上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

          上浮30%

          某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

          類型

          A1

          A2

          A3

          A4

          A5

          A6

          數(shù)量

          10

          5

          5

          20

          15

          5

          以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問(wèn)題:
          (Ⅰ)按照我國(guó)《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定a=950.記X為某同學(xué)家的一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求X的分布列與數(shù)學(xué)期望值;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)
          (Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購(gòu)進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:
          ①若該銷售商購(gòu)進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
          ②若該銷售商一次購(gòu)進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤(rùn)的期望值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知隨機(jī)變量Z~N(1,1),其正態(tài)分布密度曲線如圖所示,若向正方形OABC中隨機(jī)投擲10000個(gè)點(diǎn),則落入陰影部分的點(diǎn)的個(gè)數(shù)的估計(jì)值為( )
          附:若Z~N(μ,σ2),則 P(μ﹣σ<Z≤μ+σ)=0.6826;P(μ﹣2σ<Z≤μ+2σ)=0.9544;P(μ﹣3σ<Z≤μ+3σ)=0.9974.

          A.6038
          B.6587
          C.7028
          D.7539

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)離散型隨機(jī)變量X的分布列為

          X

          1

          2

          3

          P

          P1

          P2

          P3

          則EX=2的充要條件是(
          A.P1=P2
          B.P2=P3
          C.P1=P3
          D.P1=P2=P3

          查看答案和解析>>

          同步練習(xí)冊(cè)答案