日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)F1,F(xiàn)2是橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左右焦點(diǎn),若該橢圓上一點(diǎn)P滿足|PF2|=|F1F2|,且以原點(diǎn)O為圓心,以b為半徑的圓與直線PF1有公共點(diǎn),則該橢圓離心率e的取值范圍是
           
          分析:分別過(guò)F2、點(diǎn)O作PF1的垂線,垂足分別為D、E,利用橢圓的定義與勾股定理,并根據(jù)OE是△DF1F2的中位線,算出|OE|=
          1
          2
          |DF2|=
          1
          2
          3c2+2ac-a2
          .根據(jù)以原點(diǎn)O為圓心、b為半徑的圓與直線PF1有公共點(diǎn),可得|OE|≤b,由此建立關(guān)于a、c的不等式,化簡(jiǎn)整理得到關(guān)于離心率e的一元二次不等式,解之可得橢圓離心率e的范圍.
          解答:精英家教網(wǎng)解:∵點(diǎn)P在橢圓C上,∴根據(jù)橢圓的定義,可得|PF1|+|PF2|=2a.
          又∵|PF2|=|F1F2|=2c,∴|PF1|=2a-2c
          過(guò)點(diǎn)F2作F2D⊥PF1于D點(diǎn),過(guò)點(diǎn)O作OE⊥PF1于E點(diǎn),
          ∵|PF2|=|F1F2|,
          ∴△PF1F2是等腰三角形,可得D是PF1的中點(diǎn),DF1=
          1
          2
          |PF1|=a-c,
          Rt△DF1F2中,|DF1|2+|DF2|2=|F1F2|2,
          ∴|DF2|=
          |F1F2|2-|DF1|2 
          =
          4c2-(a-c)2
          =
          3c2+2ac-a2

          ∵△DF1F2中,OE是中位線,∴|OE|=
          1
          2
          |DF2|=
          1
          2
          3c2+2ac-a2

          又∵以原點(diǎn)O為圓心,以b為半徑的圓與直線PF1有公共點(diǎn),
          ∴原點(diǎn)O到直線PF1的距離小于b,即|OE|≤b,得
          1
          2
          3c2+2ac-a2
          ≤b,
          化簡(jiǎn)得3c2+2ac-a2≤4(a2-c2),即7c2+2ac-5a2≤0,兩邊都除以a2得7e2+2e-5≤0,解之得-1≤e≤
          5
          7

          結(jié)合橢圓的離心率e∈(0,1),可得0<e≤
          5
          7

          又∵等腰△PF1F2中,|PF2|+|F1F2|>|PF2|,
          ∴2c+2c>2a-2c,得a<3c,所以e=
          c
          a
          1
          3

          綜上所述,橢圓的離心率e的取值范圍是(
          1
          3
          ,
          5
          7
          ]

          故答案為:(
          1
          3
          ,
          5
          7
          ]
          點(diǎn)評(píng):本題給出橢圓滿足的條件,求橢圓離心率的取值范圍.著重考查了橢圓的定義與標(biāo)準(zhǔn)方程、橢圓的簡(jiǎn)單幾何性質(zhì)、三角形中位線定理和直線與圓的位置關(guān)系等知識(shí),屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•黑龍江)設(shè)F1、F2是橢圓E:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左、右焦點(diǎn),P為直線x=
          3a
          2
          上一點(diǎn),△F2PF1是底角為30°的等腰三角形,則E的離心率為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•浙江模擬)設(shè)F1,F(xiàn)2是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1  (a>b>0)
          的左、右焦點(diǎn),A、B分別為其左頂點(diǎn)和上頂點(diǎn),△BF1F2是面積為
          3
          的正三角形.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過(guò)右焦點(diǎn)F2的直線l交橢圓C于M,N兩點(diǎn),直線AM、AN分別與已知直線x=4交于點(diǎn)P和Q,試探究以線段PQ為直徑的圓與直線l的位置關(guān)系.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓G與雙曲線12x2-4y2=3有相同的焦點(diǎn),且過(guò)點(diǎn)P(1,
          32
          )

          (1)求橢圓G的方程;
          (2)設(shè)F1、F2是橢圓G的左焦點(diǎn)和右焦點(diǎn),過(guò)F2的直線l:x=my+1與橢圓G相交于A、B兩點(diǎn),請(qǐng)問(wèn)△ABF1的內(nèi)切圓M的面積是否存在最大值?若存在,求出這個(gè)最大值及直線l的方程,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)F1、F2是橢圓E:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左、右焦點(diǎn),P為直線x=
          3a
          2
          上一點(diǎn),△F2PF1是底角為30°的等腰三角形,則橢圓E的離心率為
          3
          4
          3
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•湛江二模)設(shè)F1,F(xiàn)2是橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左右焦點(diǎn),若直線x=ma (m>1)上存在一點(diǎn)P,使△F2PF1是底角為30°的等腰三角形,則m的取值范圍是( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案