日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若|x(x-2)|>0,則的取值范圍是    
          【答案】分析:解絕對值不等式得到x≠0,且 x≠2,函數(shù)化為y=x+-3,分x>0和x<0兩種情況討論,分別使用基本不等式求出
           x+ 的范圍,進(jìn)而得到函數(shù)y的取值范圍.
          解答:解:∵|x(x-2)|>0,∴x≠0,且 x≠2,∴y=x+-3,
          當(dāng) x>0時,由基本不等式得  y≥2-3=1(當(dāng)且僅當(dāng)x=2時等號成立),
          ∵x≠2,∴y>1.
          當(dāng)  x<0時,∵(-x)+(-)≥4(當(dāng)且僅當(dāng)x=-2時等號成立),∴x+≤-4,
          ∴y≤-4-3=-7,故 的取值范圍是(-∞,-7]∪(1,+∞),
          故答案為:(-∞,-7]∪(1,+∞).
          點(diǎn)評:本題考查絕對值不等式的解法,基本不等式的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          對于定義在D上的函數(shù)y=f(x),若同時滿足.
          ①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
          ②對于D內(nèi)任意x2,當(dāng)x2∉[a,b]時總有f(x2)>c稱f(x)為“平底型”函數(shù).
          (1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡要說明理由;
          (文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡要說明理由;
          (2)(理)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對一切t∈R恒成立,求實(shí)數(shù)x的范圍;
          (文)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對一切t∈R恒成立,求實(shí)數(shù)x的范圍;
          (3)(理)若F(x)=mx+
          x2+2x+n
          ,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
          (文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          15、若|x-1|+|x-2|+|x-3|≥m恒成立,則m的取值范圍為
          (-∞,2]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (理)定義:若存在常數(shù)k,使得對定義域D內(nèi)的任意兩個不同的實(shí)數(shù)x1,x2,均有:|f(x1)-f(x2)|≤k|x1-x2|成立,則稱f(x)在D上滿足利普希茨(Lipschitz)條件.
          (1)試舉出一個滿足利普希茨(Lipschitz)條件的函數(shù)及常數(shù)k的值,并加以驗(yàn)證;
          (2)若函數(shù)f(x)=
          x+1
          在[1,+∞)
          上滿足利普希茨(Lipschitz)條件,求常數(shù)k的最小值;
          (3)現(xiàn)有函數(shù)f(x)=sinx,請找出所有的一次函數(shù)g(x),使得下列條件同時成立:
          ①函數(shù)g(x)滿足利普希茨(Lipschitz)條件;
          ②方程g(x)=0的根t也是方程f(
          4
          )=
          2
          sin(
          2
          -
          π
          4
          )=-
          2
          cos
          π
          4
          =-1

          ③方程f(g(x))=g(f(x))在區(qū)間[0,2π)上有且僅有一解.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=ln(x+a)-x2-x在x=0處取得極值.
          (1)求實(shí)數(shù)a的值;
          (2)若關(guān)于x的方程f(x)=-
          5
          2
          x
          +b在區(qū)間[0,2]上恰有兩個不同的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
          (3)證明:對任意的正整數(shù)n,不等式2+
          3
          4
          +
          4
          9
          +L+
          n+1
          n2
          >ln(n+1)
          都成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          選做題:(考生可以在以下三個題任選一道題作答,如果多做以考生所作的第一道題為準(zhǔn))
          (a) 不等式|x-4|-|x-2|>1的解集為
          (-∞,
          5
          2
          )
          (-∞,
          5
          2
          )

          (b) 已知直線l的極坐標(biāo)方程為:ρcosθ-ρsinθ-
          2
          =0
          ,圓C的參數(shù)方程為
          x=cosθ
          y=sinθ
          (θ為參數(shù)),那么直線l與圓C的位置關(guān)系為
          相切
          相切

          (c) 如圖已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長線上一點(diǎn),且DF=CF=
          2
          ,AF:FB:BE=4:2:1
          .若CE與圓相切,則CE的長為
          7
          2
          7
          2

          查看答案和解析>>

          同步練習(xí)冊答案