日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知點A,B是拋物線上關(guān)于軸對稱的兩點,點E是拋物線C的準(zhǔn)線與x軸的交點.

          1)若是面積為4的直角三角形,求拋物線C的方程;

          2)若直線BE與拋物線C交于另一點D,證明:直線AD過定點.

          【答案】(1) ;(2) 證明見解析

          【解析】

          1)根據(jù)直角三角形的性質(zhì),可以得到三點在以焦點為圓心,為半徑的圓上,故點,,,再根據(jù)三角形面積,即可求出。

          2)設(shè),所在直線方程和拋物線方程,通過韋達定理,得到斜率的表達式,進而得到所在直線的表達式,通過化簡整理,即可證明。

          解:(1)由題意,是等腰直角三角形,且

          不妨設(shè)點A位于第一象限,則直線EA的方程為

          聯(lián)立方程,,解得

          所以點,,

          ,解得,

          故拋物線C的方程為

          2)(方法一)設(shè),則直線EB的方程為

          聯(lián)立方程,,消去,

          得關(guān)于的方程

          該方程有一個根,兩根之積為,

          則另一個根為,所以點D的坐標(biāo)為

          直線AD的斜率為

          所以AD的方程為

          化簡得

          所以直線AD過定點

          (方法二)設(shè),,,直線BE的方程為

          聯(lián)立方程,,消去x,

          得關(guān)于x的方程,所以

          直線AD的方程為

          化簡得

          所以直線AD過定點

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,曲線,(為參數(shù)),將曲線上的所有點的橫坐標(biāo)縮短為原來的,縱坐標(biāo)縮短為原來的后得到曲線,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為。

          1)求曲線的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;

          2)設(shè)直線l與曲線交于不同的兩點A,B,點M為拋物線的焦點,求的值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖放置的邊長為1的正方形沿軸滾動恰好經(jīng)過原點.設(shè)頂點的軌跡方程是,則對函數(shù)有下列判斷①函數(shù)是偶函數(shù);②對任意的,都有;③函數(shù)在區(qū)間上單調(diào)遞減;④函數(shù)的值域是;⑤.其中判斷正確的序號是__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間

          (2)當(dāng)時,求函數(shù)上的最大值

          (3)當(dāng)時,又設(shè)函數(shù),求證:當(dāng),且時,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知棱長為1的正方體,點是四邊形內(nèi)(含邊界)任意一點, 中點,有下列四個結(jié)論:

          ;②當(dāng)點為中點時,二面角的余弦值;③所成角的正切值為;④當(dāng)時,點的軌跡長為.

          其中所有正確的結(jié)論序號是(

          A.①②③B.①③④C.②③④D.①②④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面是矩形,的中點,平面,且,

          1)求證:

          2)求與平面所成角的正弦值;

          3)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】袋中裝有除顏色外形狀大小完全相同的6個小球,其中有4個編號為1,2, 3, 4的紅球,2個編號為A、B的黑球,現(xiàn)從中任取2個小球.;

          (1)求所取2個小球都是紅球的概率;

          (2)求所取的2個小球顏色不相同的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形中, , , 邊上,且,將沿折到的位置,使得平面平面.

          (Ⅰ)求證: ;

          (Ⅱ)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為建立健全國家學(xué)生體質(zhì)健康監(jiān)測評價機制,激勵學(xué)生積極參加身體鍛煉,教育部印發(fā)《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)(2014年修訂)》,要求各學(xué)校每學(xué)年開展覆蓋本校各年級學(xué)生的《標(biāo)準(zhǔn)》測試工作.為做好全省的迎檢工作,某市在高三年級開展了一次體質(zhì)健康模擬測試(健康指數(shù)滿分100分),并從中隨機抽取了200名學(xué)生的數(shù)據(jù),根據(jù)他們的健康指數(shù)繪制了如圖所示的頻率分布直方圖.

          1)估計這200名學(xué)生健康指數(shù)的平均數(shù)和樣本方差(同一組數(shù)據(jù)用該組區(qū)間的中點值作代表);

          2)由頻率分布直方圖知,該市學(xué)生的健康指數(shù)近似服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.

          ①求

          ②已知該市高三學(xué)生約有10000名,記體質(zhì)健康指數(shù)在區(qū)間的人數(shù)為,試求.

          附:參考數(shù)據(jù),

          若隨機變量服從正態(tài)分布,則,,.

          查看答案和解析>>

          同步練習(xí)冊答案