日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 將一副三角板如圖(1)拼好,其中AB=AC=2a,∠BAC=∠BCD=90°,∠CBD=30°.若將ABC沿BC折起,使二面角A-BC-D為直二面角,如圖(2).

          (1)求證:AB⊥平面ACD;

          (2)求二面角ABDC的大小;

          (3)求點(diǎn)C到平面ABD的距離.

          (1)證明:由CD⊥BC及二面角A-BC-D為直二面角,得CD⊥面ABC,∴CD⊥AB,AB⊥AC,∴AB⊥平面ACD.

          (2)解:如圖,取BC中點(diǎn)E,則AE⊥平面BCD.作EF⊥BD,垂足為F,連結(jié)AF,則BD⊥AF,∠AFE即二面角ABDC的平面角.由AB=AC=2a,∴BC=a.∴AE=a.∴EF=BE=

          a.∴tan∠AFE=2.∴二面角A-BD-C的大小為arctan2.

          (3)解法一:(直接法)作EG⊥AF,垂足為G,由(2)知,BD⊥平面AEF,∴BD⊥GE.∴GE⊥平面ABD.∴GE的長即點(diǎn)E到平面ABD的距離,又E為BC的中點(diǎn),∴點(diǎn)C到平面ABD的距離等于2GE.由GE×AF=AE×EF,得GE=,∴所求距離為.

          解法二:(等體積法)∵VC—ABD=VA—BCD,可得點(diǎn)C到平面ABD的距離為.


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,將一副三角板拼接,使它們有公共邊BC,且使兩個(gè)三角形所在的平面互相垂直,若∠BAC=90°,AB=AC,∠CBD=90°,∠BDC=60°,BC=6.
          (1)求證:平面ABD⊥平面ACD;
          (2)求二面角A-CD-B的平面角的正切值;
          (3)求異面直線AD與BC間的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,將一副三角板拼成直二面角A-BC-D,其中∠BAC=90°,AB=AC,∠BCD=90°,∠CBD=30°.
          (1)求證:平面BAD⊥平面CAD;  
          (2)求BD與平面CAD所成的角;
          (3)若CD=2,求C到平面BAD的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖所示,將一副三角板拼接,使它們有公共邊BC,且使兩個(gè)三角形所在的平面互相垂直,若∠BAC=90°,AB=AC,∠CBD=90°,∠BDC=60°,BC=6.
          (1)求證:平面ABD⊥平面ACD;
          (2)求二面角A-CD-B的平面角的正切值;
          (3)求異面直線AD與BC間的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年湖北省襄樊四中高二(上)數(shù)學(xué)測試卷9(文科)(解析版) 題型:解答題

          如圖所示,將一副三角板拼接,使它們有公共邊BC,且使兩個(gè)三角形所在的平面互相垂直,若∠BAC=90°,AB=AC,∠CBD=90°,∠BDC=60°,BC=6.
          (1)求證:平面ABD⊥平面ACD;
          (2)求二面角A-CD-B的平面角的正切值;
          (3)求異面直線AD與BC間的距離.

          查看答案和解析>>

          同步練習(xí)冊答案