日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)
          (I)求函數(shù)f(x)圖象的對稱中心和單調(diào)遞增區(qū)間;
          (II)△ABC中,角A,B,C的對邊分別是a,b,c,且滿足a,b,c依次成等比數(shù)列,求f(B)的最值.
          【答案】分析:(1)利用三角恒等變換化簡函數(shù)f(x)的解析式為f(x)=,由此求得它的對稱中心和單調(diào)增區(qū)間.
          (2))△ABC中,由等比數(shù)列的定義、余弦定理以及基本不等式求得cosB≥,從而得到B的范圍,再根據(jù)正弦函數(shù)的定義域和值域求得f(B)的最值.
          解答:解:(1)==,…(2分).
          令2x+=kπ,k∈z,解得 x=-,k∈z,
          故函數(shù)f(x)圖象的對稱中心為…(4分).
          由 2kπ-≤2x+≤2kπ+,k∈Z,求得
          故函數(shù)f(x)的單調(diào)遞增區(qū)間為,k∈Z…(6分).
          (2))△ABC中,∵a,b,c成等比數(shù)列,∴b2=ac,
          由余弦定理可得  ,∴…(8分).
          由于f(B)=4sin()+1,,
          當(dāng)且僅當(dāng)=,即時,f(B)max=5,…(10分).
          當(dāng)且僅當(dāng),即時,f(B)min=1…(12分).
          點(diǎn)評:本題主要考查三角函數(shù)的恒等變換及化簡求值,正弦函數(shù)的對稱性、單調(diào)性、定義域和值域,等比數(shù)列的定義和性質(zhì),基本不等式的應(yīng)用,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=e|lnx|+a|x-1|(a為實(shí)數(shù))
          (I)若a=1,判斷函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)性(不必證明);
          (II)若對于任意的x∈(0,1),總有f(x)的函數(shù)值不小于1成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x(x-
          12
          )的定義域?yàn)椋╪,n+1)(n∈N*),f(x)的函數(shù)值中所有整數(shù)的個數(shù)記為g(n).
          (1)求出g(3)的值;
          (2)求g(n)的表達(dá)式;
          (3)若對于任意的n∈N*,不等式(Cn0+Cn1+…+Cnn)l≥g(n)-25(其中Cni,i=1,2,3,…,n為組合數(shù))都成立,求實(shí)數(shù)l的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012屆山西大學(xué)附中高三4月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

          (本小題共12分)已知函數(shù)的 部 分 圖 象如 圖 所示.

          (I)求 函 數(shù)的 解 析 式;

          (II)在△中,角的 對 邊 分 別 是,若的 取 值 范 圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=e|lnx|+a|x-1|(a為實(shí)數(shù))
          (I)若a=1,判斷函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)性(不必證明);
          (II)若對于任意的x∈(0,1),總有f(x)的函數(shù)值不小于1成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)f(x)=x(x-
          1
          2
          )的定義域?yàn)椋╪,n+1)(n∈N*),f(x)的函數(shù)值中所有整數(shù)的個數(shù)記為g(n).
          (1)求出g(3)的值;
          (2)求g(n)的表達(dá)式;
          (3)若對于任意的n∈N*,不等式(Cn0+Cn1+…+Cnn)l≥g(n)-25(其中Cni,i=1,2,3,…,n為組合數(shù))都成立,求實(shí)數(shù)l的最小值.

          查看答案和解析>>