日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓(a>b>0)的離心率,在橢圓E上存在A,B兩點(diǎn)關(guān)于直線l:y=x+1對稱.
          (Ⅰ)現(xiàn)給出下列三個條件:①直線AB恰好經(jīng)過橢圓E的一個焦點(diǎn);②橢圓E的右焦點(diǎn)F到直線l的距離為;③橢圓E的左、右焦點(diǎn)到直線l的距離之比為
          試從中選擇一個條件以確定橢圓E,并求出它的方程;(注:只需選擇一個方案答題,如果用多種方案答題,則按第一種方案給分)
          (Ⅱ)若以AB為直徑的圓恰好經(jīng)過橢圓E的上頂點(diǎn)S,求b的值.

          【答案】分析:(Ⅰ)選擇條件②運(yùn)算量小一些,由橢圓E的右焦點(diǎn)F到直線l的距離為,利用點(diǎn)到直線的距離公式即可得c的值,再由離心率,即可求得a值,最后由橢圓a2=b2+c2,求的b值即可得橢圓方程
          (Ⅱ)先由離心率,得a2=2b2,將橢圓方程化為,再由橢圓E上存在A,B兩點(diǎn)關(guān)于直線l:y=x+1對稱,知AB的中點(diǎn)(,)在直線:y=x+1上,聯(lián)立直線AB和橢圓方程,利用韋達(dá)定理列方程可得m的值,最后利用以AB為直徑的圓恰好經(jīng)過橢圓E的上頂點(diǎn)S(0,b),,即AS⊥BS,即=0,利用韋達(dá)定理列方程即可得b的值
          解答:解:(Ⅰ)選擇條件②,∵橢圓(a>b>0)的離心率,
          =,橢圓的右焦點(diǎn)坐標(biāo)為(c,0)
          ∵右焦點(diǎn)F到直線l的距離為
          =,
          ∴c=3,a=3
          ∵a2=b2+c2
          ∴b2=9
          ∴橢圓E的方程為
          (Ⅱ)∵離心率
          ∴a2=2b2
          ∵A,B兩點(diǎn)關(guān)于直線l:y=x+1對稱,
          ∴直線AB的斜率為-1,設(shè)直線AB的方程為y=-x+m,代入橢圓方程得:(3b2)x2-4mb2x+2b2m2-2b4=0
          ∴△>0時,x1+x2=,x1x2=
          依題意,設(shè)A(x1,y1),B(x2,y2),
          ∵橢圓E上存在A,B兩點(diǎn)關(guān)于直線l:y=x+1對稱,
          ∴AB的中點(diǎn)()在直線:y=x+1上
          =,==,
          ∴m=-3
          ∵橢圓E的上頂點(diǎn)S(0,b),以AB為直徑的圓恰好經(jīng)過橢圓E的上頂點(diǎn)S,即AS⊥BS,即=0,即(-x1,b-y1)•(-x2,b-y2)=0
          ∴x1x2+(b-y1)(b-y2)=x1x2+y1y2-b(y1+y2)+b2=2x1x2+(b+3)(x1+x2)+9+6b+b2=0
          -4(b+3))+9+6b+b2=0,解得b=9,b=-3(舍去)
          ∴b=9
          點(diǎn)評:本題考察了橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì),直線與橢圓的位置關(guān)系,解題時要認(rèn)真體會韋達(dá)定理在解決直線與圓錐曲線問題中的重要應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓=1(a>b>0)與雙曲線=1(m>0,n>0)有相同的焦點(diǎn)(-c,0)和(c,0),若c是a、m的等比中項,n2是2m2與c2的等差中項,則橢圓的離心率是(    )

          A.                    B.               C.                 D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014屆廣東省、陽東一中高二上聯(lián)考文數(shù)試卷(解析版) 題型:解答題

          (本題滿分14分)

          如圖,已知橢圓=1(ab>0),F1F2分別為橢圓的左、右焦點(diǎn),A為橢圓的上的頂點(diǎn),直線AF2交橢圓于另 一點(diǎn)B.

          (1)若∠F1AB=90°,求橢圓的離心率;

          (2)若=2,·,求橢圓的方程.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(天津卷解析版) 題型:解答題

          已知橢圓(a>b>0),點(diǎn)在橢圓上。

          (I)求橢圓的離心率。

          (II)設(shè)A為橢圓的右頂點(diǎn),O為坐標(biāo)原點(diǎn),若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。

          【考點(diǎn)定位】本小題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點(diǎn)間距離公式等基礎(chǔ)知識. 考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法.考查運(yùn)算求解能力、綜合分析和解決問題的能力.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省天門市高三天5月模擬文科數(shù)學(xué)試題 題型:解答題

          已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經(jīng)過點(diǎn)M(0,1),與橢圓C交于不同兩點(diǎn)A、B.

             (1)求橢圓C的標(biāo)準(zhǔn)方程;

             (2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時,求k的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年河北省邯鄲市高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

          (本小題滿分分)

          (普通高中)已知橢圓(a>b>0)的離心率,焦距是函數(shù)的零點(diǎn).

          (1)求橢圓的方程;

          (2)若直線與橢圓交于、兩點(diǎn),,求k的值.

           

          查看答案和解析>>

          同步練習(xí)冊答案