日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在正方體ABCD-A1B1C1D1中,有下面結(jié)論:

          ①AC∥平面CB1D1;

          ②AC1平面CB1D1;

          ③AC1與底面ABCD所成角的正切值是

          ④AD1與BD為異面直線.其中正確的結(jié)論的序號是________.

          【答案】②③④

          【解析】

          利用線面平行,線面垂直和線面所成角的定義分別判斷.因為AC∩平面CB1D1=C,所以AC∥平面CB1D1錯誤;根據(jù)線面垂直的判定定理得到正確;由線面角的定義得到AC1在底面ABCD的射影為AC,所以∠C1ACAC1與底面ABCD所成的角,在三角形中求得正切值正確;由異面直線的定義可知,AD1BD為異面直線,所以正確.

          因為AC∩平面CB1D1=C,所以AC∥平面CB1D1錯誤,所以錯誤.

          連結(jié)BC1,A1 C1,則BC1⊥B1 C,又因為AB⊥面BC C1B1

          AB⊥B1 C, AB∩BC1=B,B1 C⊥面ABC1

          進而得到AC1B1C,

          連接A1 C1,同理可證B1D1⊥AC1

          又因為B1D1∩B1 C于點B1

          故得到AC1平面CB1D1

          所以正確.

          因為AC1在底面ABCD的射影為AC,所以∠C1ACAC1與底面ABCD所成的角,設(shè)正方體的邊長為a,AC=

          所以所以正確.

          由異面直線的定義可知,AD1BD為異面直線,所以正確.

          故答案為:②③④.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱柱中,E,FG分別為,,AB的中點.

          求證:平面平面BEF

          若平面,求證:HBC的中點.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.

          (1) 經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);

          (2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機抽取個,再從這個中隨機抽取個,求這個芒果中恰有個在內(nèi)的概率.

          (3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有個,經(jīng)銷商提出如下兩種收購方案:

          A:所以芒果以/千克收購;

          B:對質(zhì)量低于克的芒果以/個收購,高于或等于克的以/個收購.

          通過計算確定種植園選擇哪種方案獲利更多?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a、b、c,已知a=csinB+bcosC.
          (1)求A+C的值;
          (2)若b= ,求△ABC面積的最值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知圓O外有一點P,作圓O的切線PM,M為切點,過PM的中點N,作割線NAB,交圓于A,B兩點,連接PA并延長,交圓O于點C,連續(xù)PB交圓O于點D,若MC=BC.

          (1)求證:△APM∽△ABP;
          (2)求證:四邊形PMCD是平行四邊形.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一個體積為12 的正三棱柱的三視圖如圖所示,則這個三棱柱的側(cè)視圖的面積為(

          A.6
          B.8
          C.8
          D.12

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)列{an}的前n項和為Sn , a1=1,an+1=2Sn+1(n∈N*),等差數(shù)列{bn}滿足b3=3,b5=9.
          (1)分別求數(shù)列{an},{bn}的通項公式;
          (2)設(shè)Cn= (n∈N*),求證Cn+1<Cn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)y=﹣sin(ωx+φ)(ω>0,φ∈(﹣ , ))的一條對稱軸為x= ,一個對稱中心為( ,0),在區(qū)間[0, ]上單調(diào).
          (1)求ω,φ的值;
          (2)用描點法作出y=sin(ωx+φ)在[0,π]上的圖象.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=2axx2-3ln x,其中a∈R,為常數(shù).

          (1)若f(x)在x∈[1,+∞)上是減函數(shù),求實數(shù)a的取值范圍;

          (2)若x=3是f(x)的極值點,求f(x)在x∈[1,a]上的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案