日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】近年來(lái),隨著汽車消費(fèi)的普及,二手車流通行業(yè)得到迅猛發(fā)展.某汽車交易市場(chǎng)對(duì)2017 年成交的二手車的交易前的使用時(shí)間(以下簡(jiǎn)稱“使用時(shí)間”)進(jìn)行統(tǒng)計(jì),得到如圖1所示的頻率分布直方圖,在圖1對(duì)使用時(shí)間的分組中,將使用時(shí)間落入各組的頻率視為概率.

          (1)若在該交易市場(chǎng)隨機(jī)選取3輛2017年成交的二手車,求恰有2輛使用年限在的概率;

          (2)根據(jù)該汽車交易市場(chǎng)往年的數(shù)據(jù),得到圖2所示的散點(diǎn)圖,其中 (單位:年)表示二手車的使用時(shí)間,(單位:萬(wàn)元)表示相應(yīng)的二手車的平均交易價(jià)格.

          ①由散點(diǎn)圖判斷,可采用作為該交易市場(chǎng)二手車平均交易價(jià)格關(guān)于其使用年限的回歸方程,相關(guān)數(shù)據(jù)如下表(表中):

          試選用表中數(shù)據(jù),求出關(guān)于的回歸方程;

          ②該汽車交易市場(chǎng)擬定兩個(gè)收取傭金的方案供選擇.

          甲:對(duì)每輛二手車統(tǒng)—收取成交價(jià)格的的傭金;

          乙:對(duì)使用8年以內(nèi)(含8年)的二手車收取成交價(jià)格的的傭金,對(duì)使用時(shí)間8年以上(不含 8年)的二手車收取成交價(jià)格的的傭金.

          假設(shè)采用何種收取傭金的方案不影響該交易市場(chǎng)的成交量,根據(jù)回歸方程和圖表1,并用,各時(shí)間組的區(qū)間中點(diǎn)值代表該組的各個(gè)值.判斷該汽車交易市場(chǎng)應(yīng)選擇哪個(gè)方案能獲得更多傭金.

          附注:

          于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,;

          ②參考數(shù)據(jù):.

          【答案】(1)0.288;(2)①,②見(jiàn)解析.

          【解析】分析:(1)由頻率分布直方圖知,在該汽車交易市場(chǎng)2017年成交的二手車隨機(jī)選取1輛,使用時(shí)間在的概率為, 則所求的概率為

          (2)①由題意可得關(guān)于的線性回歸方程為,關(guān)于的回歸方程為 .

          ②根據(jù)頻率分布直方圖和①中的回歸方程,對(duì)成交的二手汽車可預(yù)測(cè):若采用甲方案,預(yù)計(jì)該汽車交易市場(chǎng)對(duì)于成交的每輛車可獲得的平均傭金為萬(wàn)元;若采用乙方案,預(yù)計(jì)該汽車交易市場(chǎng)對(duì)于成交的每輛車可獲得的平均傭金為:萬(wàn)元.則采用甲方案能獲得更多傭金.

          詳解:(1)由頻率分布直方圖知,該汽車交易市場(chǎng)2017年成交的二手車使用時(shí)間在

          的頻率為,使用時(shí)間在的頻率為

          所以在該汽車交易市場(chǎng)2017年成交的二手車隨機(jī)選取1輛,

          其使用時(shí)間在的概率為,

          所以所求的概率為

          (2)①由,則關(guān)于的線性回歸方程為.

          由于

          ,

          關(guān)于的線性回歸方程為,

          所以關(guān)于的回歸方程為

          ②根據(jù)頻率分布直方圖和①中的回歸方程,對(duì)成交的二手汽車可預(yù)測(cè):

          使用時(shí)間在的頻率為,

          對(duì)應(yīng)的成交價(jià)格的預(yù)測(cè)值為

          使用時(shí)間在的頻率為,

          對(duì)應(yīng)的成交價(jià)格預(yù)測(cè)值為;

          使用時(shí)間在的頻率為

          對(duì)應(yīng)的成交價(jià)格的預(yù)測(cè)值為;

          使用時(shí)間在的頻率為,

          對(duì)應(yīng)的成交價(jià)格的預(yù)測(cè)值為

          使用時(shí)間在的頻率為,

          對(duì)應(yīng)的成交價(jià)格的預(yù)測(cè)值為

          若采用甲方案,預(yù)計(jì)該汽車交易市場(chǎng)對(duì)于成交的每輛車可獲得的平均傭金為

          萬(wàn)元;

          若采用乙方案,預(yù)計(jì)該汽車交易市場(chǎng)對(duì)于成交的每輛車可獲得的平均傭金為

           

          萬(wàn)元.

          因?yàn)?/span>,所以采用甲方案能獲得更多傭金.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)數(shù)列的首項(xiàng),前項(xiàng)和滿足關(guān)系式.

          (1)求證:數(shù)列是等比數(shù)列;

          (2)設(shè)數(shù)列的公比為,作數(shù)列,使,求數(shù)列的通項(xiàng)公式;

          (3)數(shù)列滿足條件(2),求和:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (1)若函數(shù)在點(diǎn)處切線的斜率為4,求實(shí)數(shù)的值;

          (2)求函數(shù)的單調(diào)區(qū)間;

          (3)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在四棱錐中,.

          (1)設(shè)相交于點(diǎn),,且平面,求實(shí)數(shù)的值;

          (2)若,且,求二面角 的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某課程考核分理論與實(shí)驗(yàn)兩部分進(jìn)行,每部分考核成績(jī)只記“合格”與“不合格”,兩部分考核都是“合格”,則該課程考核“合格”,若甲、乙、丙三人在理論考核中合格的概率分別為0.9,0.8,0.7,在實(shí)驗(yàn)考核中合格的概率分別為0.8,0.7,0.9,所有考核是否合格相互之間沒(méi)有影響.

          (1)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;

          (2)求這三個(gè)人該課程考核都合格的概率(結(jié)果保留三位小數(shù)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四棱錐的底面是平行四邊形,,.

          (1)求異面直線所成的角;

          (2)若,,,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          1)求的定義域;

          2)判斷的奇偶性;

          3)求使x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(請(qǐng)寫出式子在寫計(jì)算結(jié)果)有4個(gè)不同的小球,4個(gè)不同的盒子,現(xiàn)在要把球全部放入盒內(nèi):

          1)共有多少種方法?

          2)若每個(gè)盒子不空,共有多少種不同的方法?

          3)恰有一個(gè)盒子不放球,共有多少種放法?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,三棱柱中,側(cè)面的菱形, .

          (1)證明:平面平面.

          (2)若,直線與平面所成的角為,求直線與平面所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案