日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 討論函數(shù)f(x)=x+(a>0)的單調(diào)性.
          f(x)分別在(-∞,-]、[,+∞)上為增函數(shù);f(x)分別在[-,0)、(0,]上為減函數(shù)
          方法一 顯然f(x)為奇函數(shù),所以先討論函數(shù)f(x)在(0,+∞)上的單調(diào)性,設(shè)x1>x2>0,則
          f(x1)-f(x2) =(x1+)-(x2+)=(x1-x2)·(1-).
          ∴當(dāng)0<x2<x1時,>1,
          則f(x1)-f(x2)<0,即f(x1)<f(x2),故f(x)在(0,]上是減函數(shù).
          當(dāng)x1>x2時,0<<1,則f(x1)-f(x2)>0,即f(x1)>f(x2),
          故f(x)在[,+∞)上是增函數(shù).∵f(x)是奇函數(shù),
          ∴f(x)分別在(-∞,-]、[,+∞)上為增函數(shù);f(x)分別在[-,0)、(0,]上為減函數(shù).
          方法二 由f ′(x)=1-=0可得x=±
          當(dāng)x>時或x<-時,f ′(x)>0,∴f(x)分別在(,+∞)、(-∞,-]上是增函數(shù).
          同理0<x<或-<x<0時,f′(x)<0
          即f(x)分別在(0,]、[-,0)上是減函數(shù).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          求函數(shù)的最大值 和最小值及相應(yīng)的的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知f(x)在定義域(0,+∞)上為增函數(shù),且滿足f(xy)=f(x)+f(y),f(3)=1,試解不等式f(x)+f(x-8)≤2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          是二次函數(shù),對任意實(shí)數(shù)都成立,又知,求的大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是( 。
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          設(shè)函數(shù)滿足:對任意的,都有,則 的大小關(guān)系是______________________________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          若函數(shù)在區(qū)間上的最大值為,求實(shí)數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題



          (1)求的反函數(shù)的定義域;
          (2)用函數(shù)單調(diào)性定義證明在區(qū)間上是增函數(shù)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          ,則

          查看答案和解析>>

          同步練習(xí)冊答案