【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
(1)在曲線上任取一點
,連接
,在射線
上取一點
,使
,求
點軌跡的極坐標(biāo)方程;
(2)在曲線上任取一點
,在曲線
上任取一點
,求
的最小值.
【答案】(1)(2)
【解析】
(1)求出的極坐標(biāo)方程,設(shè)出
點的極坐標(biāo)
,通過
構(gòu)建出
與
的等量關(guān)系,從而得出
點軌跡的極坐標(biāo)方程;
(2)先求出的普通方程,可以得到曲線
是橢圓,然后轉(zhuǎn)化為參數(shù)方程,
的最小值即為橢圓
上的點
到直線
距離的最小值,利用點到直線的距離求解最值。
解:(1)因為曲線的參數(shù)方程為
(
為參數(shù))
所以化為普通方程為
,
故的極坐標(biāo)方程為
,
設(shè),
則,即
,
點軌跡的極坐標(biāo)方程為
(2)因為曲線的極坐標(biāo)方程為
所以化為直角坐標(biāo)方程為
.
故可化為參數(shù)方程為
(
為參數(shù)),
的最小值為橢圓
上的點
到直線
距離的最小值.
設(shè),則
,
。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前
項和為
,
,
(
且
),數(shù)列
滿足:
,且
(
且
).
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)求證:數(shù)列為等比數(shù)列;
(Ⅲ)求數(shù)列的前
項和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在
上單調(diào)遞減,求實數(shù)
的取值范圍.
(2)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一件剛出土的珍貴文物要在博物館大廳中央展出,需要設(shè)計各面是玻璃平面的無底正四棱柱將其罩住,罩內(nèi)充滿保護文物的無色氣體.已知文物近似于塔形,高1.8米,體積0.5立方米,其底部是直徑為0.9米的圓形,要求文物底部與玻璃罩底邊至少間隔0.3米,文物頂部與玻璃罩上底面至少間隔0.2米,氣體每立方米1000元,則氣體費用最少為( )元
A.4500B.4000C.2880D.2380
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知頂點為原點的拋物線C的焦點與橢圓的上焦點重合,且過點
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若拋物線上不同兩點A,B作拋物線的切線,兩切線的斜率,若記AB的中點的橫坐標(biāo)為m,AB的弦長
,并求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).其中
.
(1)討論函數(shù)的單調(diào)性;
(2)函數(shù)在
處存在極值-1,且
時,
恒成立,求實數(shù)
的最大整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,
平面
,
,
,
的中點為
.
(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在點
,使得
平面
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,以原點為圓心,橢圓
的短半軸長為半徑的圓與直線
相切.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)為橢圓右頂點,過橢圓
的右焦點的直線
與橢圓
交于
,
兩點(異于
),直線
,
分別交直線
于
,
兩點. 求證:
,
兩點的縱坐標(biāo)之積為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com