日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分18分)本題共有3個(gè)小題,第1小題滿分5分,第2小題滿分6分,第3小題滿分7分
          已知曲線的方程為,為曲線上的兩點(diǎn),為坐標(biāo)原點(diǎn),且有
          (1)若所在直線的方程為,求的值;
          (2)若點(diǎn)為曲線上任意一點(diǎn),求證:為定值;
          (3)在(2)的基礎(chǔ)上,用類比或推廣的方法對(duì)新的圓錐曲線寫(xiě)出一個(gè)命題,并對(duì)該命題加以證明.
          解:(1)∵所在直線的方程為
             可得    ∴…………2分
          又 ∵ ∴ ∴所在直線的方程為,
          同理可得……………4分
                   ……………5分
          (2)當(dāng)點(diǎn)軸上時(shí),點(diǎn)軸上,此時(shí)有,,
                   ……………6分
          當(dāng)點(diǎn)不在軸上時(shí),設(shè)所在直線的方程為,則所在直線的方程為,、兩點(diǎn)的坐標(biāo)分別為、
            可得, ∴ ……………8分
          同理,由可得, ∴……………9分
          為定值………11分
          (3)根據(jù)所寫(xiě)新命題的思維層次的不同情況分別進(jìn)行評(píng)分
          ①已知雙曲線的方程為,為曲線上的兩點(diǎn),為坐標(biāo)原點(diǎn),且有。求證:為定值。              ……………13分
          證明:顯然、兩點(diǎn)都不能在軸上,
          設(shè)所在直線的方程為,則所在直線的方程為,、兩點(diǎn)的坐標(biāo)分別為、
            可得, ……………14分
          同理,由可得,
          ………15分
          ②已知橢圓的方程為,、為曲線上的兩點(diǎn),為坐標(biāo)原點(diǎn),且。
          求證:……………13分
          證明:當(dāng)點(diǎn)軸上時(shí),點(diǎn)軸上,
          此時(shí)有,,       ……………14分
          當(dāng)點(diǎn)不在軸上時(shí),設(shè)所在直線的方程為,
          所在直線的方程為、兩點(diǎn)的坐標(biāo)分別為、
            可得, 
          ……………15分
          同理,由可得
          , ……………16分
          …17分
          ③已知雙曲線的方程為,、為曲線上的兩點(diǎn),為坐標(biāo)原點(diǎn),且有,
          則當(dāng)時(shí),求證:……………14分
          證明:顯然、兩點(diǎn)都不能在軸上,
          設(shè)所在直線的方程為,則在直線的方程為,兩點(diǎn)的坐標(biāo)分別為、
            可得, ……15分
          同理,由可得
          , ……………17分
          ……………18分
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分12分)(注意:在試題卷上作答無(wú)效)
          已知的頂點(diǎn)A在射線上,、兩點(diǎn)關(guān)于x軸對(duì)稱,0為坐標(biāo)原點(diǎn),
          且線段AB上有一點(diǎn)M滿足當(dāng)點(diǎn)A在上移動(dòng)時(shí),記點(diǎn)M的軌跡為W.
          (Ⅰ)求軌跡W的方程;
          (Ⅱ)設(shè)是否存在過(guò)的直線與W相交于P,Q兩點(diǎn),使得若存在,
          求出直線;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          是三角形的一個(gè)內(nèi)角,且,則方程所表示的曲線為(    ).
          A.焦點(diǎn)在軸上的橢圓B.焦點(diǎn)在軸上的橢圓
          C.焦點(diǎn)在軸上的雙曲線D.焦點(diǎn)在軸上的的雙曲線

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          一條線段AB的長(zhǎng)為2,兩個(gè)端點(diǎn)A和B分別在x軸和y軸上滑動(dòng),則線段AB的中點(diǎn)的軌跡是(  )
          A.雙曲線B.雙曲線的一分支
          C.圓D.橢圓

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          如圖,在正方體ABCD-A1B1C1D1中,P是側(cè)面BB1C1C內(nèi)一動(dòng)點(diǎn),若P到直線BC與直線C1D1的距離相等,則動(dòng)點(diǎn)P的軌跡所在的曲線是(  。.
          A.直線B.拋物線C.雙曲線D.圓

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分13分)
          設(shè),點(diǎn)的坐標(biāo)為(1,1),點(diǎn)在拋物線上運(yùn)動(dòng),點(diǎn)滿足,經(jīng)過(guò)點(diǎn)與軸垂直的直線交拋物線于點(diǎn),點(diǎn)滿足,求點(diǎn)的軌跡方程。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          ((本小題滿分12分)設(shè)橢圓的焦點(diǎn)分別為,
          直線軸于于點(diǎn)A,且
          (1)試求橢圓的方程;
          (2)過(guò)、分別作互相垂直的兩直線與橢圓分別
          交于D、E、M、N四點(diǎn)(如圖所示),若四邊形
          DMEN的面積為,求DE的直線方程。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          、中心在原點(diǎn)、焦點(diǎn)在x軸上的雙曲線的實(shí)軸長(zhǎng)與虛軸長(zhǎng)相等,并且焦點(diǎn)到漸近線的距離為,則雙曲線方程為_(kāi)__________。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          設(shè)坐標(biāo)原點(diǎn)為O,拋物線與過(guò)焦點(diǎn)的直線交于A、B兩點(diǎn),則="        " .

          查看答案和解析>>

          同步練習(xí)冊(cè)答案