日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 求下列函數(shù)的單調(diào)遞減區(qū)間
          (1)
          (2)y=2x2-lnx.
          【答案】分析:分別求導(dǎo)數(shù),令其小于0,解不等式即可,注意和函數(shù)的定義域取交集.
          解答:解:(1)求導(dǎo)數(shù)y′=3x2-x-2=(3x+2)(x-1)…(2分)
          令y<0,可解得…(5分)
          因此,原函數(shù)的減區(qū)間是.…(6分)
          (2)原函數(shù)的定義域是(0,+∞),
          求導(dǎo)數(shù)可得…(8分)
          令y<0,可解得,…(11分)
          因此,原函數(shù)的減區(qū)間是…(12分)
          點(diǎn)評(píng):本題考查函數(shù)的單調(diào)區(qū)間的求解,求導(dǎo)數(shù)并解不等式是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          對(duì)于定義域?yàn)镈的函數(shù)y=f(x),若同時(shí)滿足下列條件:
          ①f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;
          ②存在區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域?yàn)閇a,b];那么把y=f(x)(x∈D)叫閉函數(shù).
          (1)求閉函數(shù)y=-x3符合條件②的區(qū)間[a,b];
          (2)判斷函數(shù)f(x)=
          3
          4
          x+
          1
          x
            (x>0)
          是否為閉函數(shù)?并說(shuō)明理由;
          (3)若y=k+
          x+2
          是閉函數(shù),求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知y=f(x)(x∈D,D為此函數(shù)的定義域)同時(shí)滿足下列兩個(gè)條件:①函數(shù)f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;②如果存在區(qū)間[a,b]⊆D,使函數(shù)f(x)在區(qū)間[a,b]上的值域?yàn)閇a,b],那么稱y=f(x),x∈D為閉函數(shù);請(qǐng)解答以下問(wèn)題:
          (1)求閉函數(shù)y=-x3符合條件②的區(qū)間[a,b];
          (2)判斷函數(shù)f(x)=
          3
          4
          x+
          1
          x
          (x∈(0,+∞))
          是否為閉函數(shù)?并說(shuō)明理由;
          (3)若y=k+
          x
          (k<0)
          是閉函數(shù),求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=ax2-2
          4+2b-b2
          x,g(x)=-
          1-(x-a)2
          (a,b∈R)
          (1)當(dāng)b=0時(shí),若f(x)在(-∞,2]上單調(diào)遞減,求a的取值范圍;
          (2)求滿足下列條件的所有整數(shù)對(duì)(a,b):存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          求下列函數(shù)的單調(diào)遞減區(qū)間
          (1)y=x3-
          12
          x2-2x+5

          (2)y=2x2-lnx.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案