日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2008•上海模擬)已知向量
          m
          n
          ,其中
          m
          =(
          1
          x3+c-1
          ,-1)
          ,
          n
          =(-1,y)
          (x,y,c∈R),把其中x,y所滿足的關(guān)系式記為y=f(x),若函數(shù)f(x)為奇函數(shù).
          (Ⅰ) 求函數(shù)f(x)的表達(dá)式;
          (Ⅱ) 已知數(shù)列{an}的各項(xiàng)都是正數(shù),Sn為數(shù)列{an}的前n項(xiàng)和,且對于任意n∈N*,都有“{f(an)}的前n項(xiàng)和等于Sn2,”求數(shù)列{an}的通項(xiàng)式;
          (Ⅲ) 若數(shù)列{bn}滿足bn=4n-a•2an+1(a∈R),求數(shù)列{bn}的最小值.
          分析:(Ⅰ)根據(jù)向量平行得出函數(shù)y=f(x),再利用函數(shù)f(x)為奇函數(shù),可求c=1,從而可得函數(shù)f(x)的表達(dá)式;
          (Ⅱ) 根據(jù)條件對于任意n∈N*,都有“{f(an)}的前n項(xiàng)和等于Sn2,寫出兩等式,兩式相減可得∴{an}為公差為1的等差數(shù)列,從而可求數(shù)列{an}的通項(xiàng)公式;
          (Ⅲ)根據(jù)an=n(n∈N*),可得bn=4n-a•2n+1=(2n-a)2-a2,由于2n≥2,故需對a進(jìn)行分類討論.
          解答:解:(Ⅰ)∵
          m
          n
          1
          x3+c-1
          •y-1=0⇒y=x3+c-1(x3+c-1≠0)

          因?yàn)楹瘮?shù)f(x)為奇函數(shù).所以c=1,⇒f(x)=x3(x≠0)…(4分)
          (Ⅱ)由題意可知,f(a1)+f(a2)+…+f(an)=Sn2⇒a13+a23+a33+…+an3=Sn2…..①
          n≥2時(shí)∴a13+a23+a33+…+an-13=Sn-12…②
          由①-②可得:an3=Sn2-Sn-12=an(Sn+Sn-1),
          ∵{an}為正數(shù)數(shù)列∴an2=Sn+Sn-1…③…(2分)∴an+12=Sn+1+Sn…④
          由④-③可得:an+12-an2=an+1+an∵an+1+an>0,∴an+1-an=1,…(2分)
          且由①可得a13=a12,a1>0⇒a1=1,a13+a23=S22,a2>0⇒a2=2,∴a2-a1=1∴{an}為公差為1的等差數(shù)列,∴an=n(n∈N*)…(2分)
          (Ⅲ)∵an=n(n∈N*),∴bn=4n-a•2n+1=(2n-a)2-a2(n∈N*)…(2分)
          令2n=t(t≥2),∴bn=(t-a)2-a2(t≥2)
          (1)當(dāng)a≤2時(shí),數(shù)列{bn}的最小值為:當(dāng)n=1時(shí),b1=4-4a.…(2分)
          (2)當(dāng)a>2時(shí)
          ①若a=2k+1(k∈N*)時(shí),數(shù)列{bn}的最小值為當(dāng)n=k+1時(shí),bk+1=-a2.…(1分)
          ②若a=
          2k+2k+1
          2
          (k∈N*)
          時(shí),數(shù)列{bn}的最小值為,當(dāng)n=k或n=k+1時(shí),bk=bk+1=(2k-a)2-a2.…(1分)
          ③若2k<a<
          2k+2k+1
          2
          (k∈N*)
          時(shí),數(shù)列{bn}的最小值為,當(dāng)n=k時(shí),bk=(2k-a)2-a2…(1分)
          ④若
          2k+2k+1
          2
          <a<2k+1(k∈N*)
          時(shí),數(shù)列{bn}的最小值為,當(dāng)n=k+1時(shí),bk+1=(2k+1-a)2-a2.…(1分)
          點(diǎn)評:本題的考點(diǎn)是數(shù)列與向量的綜合,主要考查向量共線條件的運(yùn)用,考查數(shù)列通項(xiàng)公式的求解,考查了函數(shù)的最值,關(guān)鍵是正確分類.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2008•上海模擬)以拋物線y2=8
          3
          x
          的焦點(diǎn)F為右焦點(diǎn),且兩條漸近線是
          3
          y=0
          的雙曲線方程為
          x2
          9
          -
          y2
          3
          =1
          x2
          9
          -
          y2
          3
          =1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2008•上海模擬)已知AB是橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的長軸,若把該長軸n等分,過每個(gè)等分點(diǎn)作AB的垂線,依次交橢圓的上半部分于點(diǎn)P1,P2,…,Pn-1,設(shè)左焦點(diǎn)為F1,則
          lim
          n→∞
          1
          n
          (|F1A|+|F1P1|+…+|F1Pn-1|+|F1B|)
          =
          a
          a

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2008•上海模擬)集合A={x||x|<2}的一個(gè)非空真子集是
          [0,1]
          [0,1]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2008•上海模擬)一機(jī)器貓每秒鐘前進(jìn)或后退一步,程序設(shè)計(jì)師讓機(jī)器貓以前進(jìn)3步,然后再后退2步的規(guī)律移動(dòng).如果將此機(jī)器貓放在數(shù)軸的原點(diǎn),面向正方向,以1步的距離為1單位長移動(dòng).令P(n)表示第n秒時(shí)機(jī)器貓所在位置的坐標(biāo),且P(0)=0,則下列結(jié)論中錯(cuò)誤的是(  )

          查看答案和解析>>

          同步練習(xí)冊答案