【題目】如圖,在三棱柱中,
為邊長為2的等邊三角形,平面
平面
,四邊形
為菱形,
,
與
相交于點(diǎn)
.
(1)求證: ;
(2)求二面角的余弦值.
【答案】(1)見解析(2)
【解析】試題分析:(1)根據(jù)菱形的性質(zhì)可得,根據(jù)平面
平面
,可得
平面
,∴
;(2)以
為原點(diǎn),以
所在直線分別為
軸,
軸,
軸建立空間直角坐標(biāo)系,分別根據(jù)向量垂直數(shù)量積為零列方程組,求出平面
與平面
的一個(gè)法向量,根據(jù)空間向量夾角余弦公式,可得二面角
的余弦值.
試題解析:(1)已知側(cè)面是菱形,
是
的中點(diǎn),
∵,∴
因?yàn)槠矫?/span>平面
,且
平面
,
平面平面
,
∴平面
,∴
(2)如圖,以為原點(diǎn),以
所在直線分別為
軸,
軸,
軸建立空間直角坐標(biāo)系,
由已知可得,
,
,
∴,
,
,
,
設(shè)平面的一個(gè)法向量
,
,
由,
,得
,可得
因?yàn)槠矫?/span>平面
,
,
∴平面
所以平面的一個(gè)法向量是
∴
即二面角的余弦值是
.
【方法點(diǎn)晴】本題主要考查面面垂直的性質(zhì)定理以及利用空間向量求二面角,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的左,右焦點(diǎn)分別為
,若雙曲線上存在點(diǎn)
,使
,則該雙曲線的離心率
范圍為( )
A. (1,1) B. (1,1
) C. (1,1
] D. (1,1
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知數(shù)列的前
項(xiàng)和
,且
.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令,是否存在
,使得
、
、
成等比數(shù)列.若存在,求出所有符合條件的
值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),其公差為2,a2a4=4a3+1.
(1)求{an}的通項(xiàng)公式;
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從原點(diǎn)向圓
作兩條切線,切點(diǎn)分別為
,
,記切線
,
的斜率分別為
,
.
(Ⅰ)若圓心,求兩切線
,
的方程;
(Ⅱ)若,求圓心
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知p:方程有兩個(gè)不等的負(fù)實(shí)根,q:方程
無實(shí)根,若
為真,
為假,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是等比數(shù)列,滿足
,且
成等差數(shù)列.
(1)求的通項(xiàng)公式;
(2)設(shè),數(shù)列
的前
項(xiàng)和為
,
,求正整數(shù)
的值,使得對任意
均有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知過點(diǎn)
,圓心C在拋物線
上運(yùn)動,若MN為
在x軸上截得的弦,設(shè)
,
,
當(dāng)C運(yùn)動時(shí),
是否變化?證明你的結(jié)論.
求
的最大值,并求出取最大值時(shí)
值及此時(shí)
方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com