日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          已知在極坐標(biāo)系和直角坐標(biāo)系中,極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,直線為參數(shù)),圓.

          (Ⅰ)將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;

          (Ⅱ)已知是直線上一點(diǎn),是圓上一點(diǎn),求的最小值.

          【答案】(1),(2)

          【解析】試題分析:(1)根據(jù)加減消元得直線的普通方程,根據(jù),將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)根據(jù)直線與圓位置關(guān)系得的最小值為圓心到直線距離減去半徑,根據(jù)點(diǎn)到直線距離公式計(jì)算可得結(jié)果.

          試題解析:(Ⅰ)消去直線參數(shù)方程中的得,,

          得,,將代入得圓的直角坐標(biāo)方程為.

          (Ⅱ)由()知,圓的圓心(1,0),半徑為1,

          表示圓上點(diǎn)與直線上點(diǎn)的距離,

          ∵圓心到直線的距離為=,

          的最小值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線C:y=(x+1)2與圓 (r>0)有一個(gè)公共點(diǎn)A,且在A處兩曲線的切線為同一直線l.
          (1)求r;
          (2)設(shè)m,n是異于l且與C及M都相切的兩條直線,m,n的交點(diǎn)為D,求D到l的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中,曲線參數(shù)方程為為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          (Ⅰ)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;

          (Ⅱ)已知點(diǎn),曲線和曲線交于,兩點(diǎn),且,求實(shí)數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1= ,BC=4,點(diǎn)A1在底面ABC的投影是線段BC的中點(diǎn)O.

          (1)證明在側(cè)棱AA1上存在一點(diǎn)E,使得OE⊥平面BB1C1C,并求出AE的長(zhǎng);
          (2)求平面A1B1C與平面BB1C1C夾角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若函數(shù)h(x)滿足
          ①h(0)=1,h(1)=0;
          ②對(duì)任意a∈[0,1],有h(h(a))=a;
          ③在(0,1)上單調(diào)遞減.則稱h(x)為補(bǔ)函數(shù).已知函數(shù)h(x)= (λ>﹣1,p>0)
          (1)判函數(shù)h(x)是否為補(bǔ)函數(shù),并證明你的結(jié)論;
          (2)若存在m∈[0,1],使得h(m)=m,若m是函數(shù)h(x)的中介元,記p= (n∈N+)時(shí)h(x)的中介元為xn , 且Sn= ,若對(duì)任意的n∈N+ , 都有Sn ,求λ的取值范圍;
          (3)當(dāng)λ=0,x∈(0,1)時(shí),函數(shù)y=h(x)的圖象總在直線y=1﹣x的上方,求P的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在△ABC中,已知
          (1)求證:tanB=3tanA;
          (2)若cosC= ,求A的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,建立平面直角坐標(biāo)系xOy,x軸在地平面上,y軸垂直于地平面,單位長(zhǎng)度為1千米.某炮位于坐標(biāo)原點(diǎn).已知炮彈發(fā)射后的軌跡在方程y=kx﹣ (1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).

          (1)求炮的最大射程;
          (2)設(shè)在第一象限有一飛行物(忽略其大。滹w行高度為3.2千米,試問(wèn)它的橫坐標(biāo)a不超過(guò)多少時(shí),炮彈可以擊中它?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi , yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為 =0.85x﹣85.71,則下列結(jié)論中不正確的是( )
          A.y與x具有正的線性相關(guān)關(guān)系
          B.回歸直線過(guò)樣本點(diǎn)的中心( ,
          C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
          D.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),且).

          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)求函數(shù)上的最大值.

          【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當(dāng)時(shí), ;當(dāng)時(shí), .

          【解析】試題分析】(I)利用的二階導(dǎo)數(shù)來(lái)研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對(duì)分類討論求得函數(shù)在不同取值時(shí)的最大值.

          試題解析】

          (Ⅰ),

          設(shè) ,則.

          , ,∴上單調(diào)遞增,

          從而得上單調(diào)遞增,又∵,

          ∴當(dāng)時(shí), ,當(dāng)時(shí), ,

          因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

          (Ⅱ)由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,

          由此可知.

          ,

          .

          設(shè)

          .

          ∵當(dāng)時(shí), ,∴上單調(diào)遞增.

          又∵,∴當(dāng)時(shí), ;當(dāng)時(shí), .

          ①當(dāng)時(shí), ,即,這時(shí), ;

          ②當(dāng)時(shí), ,即,這時(shí), .

          綜上, 上的最大值為:當(dāng)時(shí),

          當(dāng)時(shí), .

          [點(diǎn)睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點(diǎn)有關(guān)的參數(shù)范圍問(wèn)題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點(diǎn),并結(jié)合特殊點(diǎn),從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進(jìn)而確定參數(shù)的取值范圍;或通過(guò)對(duì)方程等價(jià)變形轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)問(wèn)題.

          型】解答
          結(jié)束】
          22

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .

          (Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;

          ( Ⅱ ) 設(shè)直線軸和軸的交點(diǎn)分別為,為圓上的任意一點(diǎn),求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案