(本小題滿分12分)已知橢圓經(jīng)過點
,且兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角形.
(1)求橢圓的方程;
(2)動直線交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點T,使得以AB為直徑的圓恒過點T。若存在,求出點T的坐標;若不存在,請說明理由.
科目:高中數(shù)學 來源: 題型:解答題
(本小題12分)離心率為的橢圓
:
的左、右焦點分別為
、
,
是坐標原點.
(1)求橢圓的方程;
(2)若直線與
交于相異兩點
、
,且
,求
.(其中
是坐標原點)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,
是拋物線
的焦點,
是拋物線
上位于第一象限內(nèi)的任意一點,過
三點的圓的圓心為
,點
到拋物線
的準線的距離為
.(Ⅰ)求拋物線
的方程;(Ⅱ)是否存在點
,使得直線
與拋物線
相切于點
若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線的焦點為
,過焦點
且不平行于
軸的動直線
交拋物線于
,
兩點,拋物線在
、
兩點處的切線交于點
.
(Ⅰ)求證:,
,
三點的橫坐標成等差數(shù)列;
(Ⅱ)設直線交該拋物線于
,
兩點,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的中心在原點,焦點
在
軸上,且焦距為
,實軸長為4
(Ⅰ)求橢圓的方程;
(Ⅱ)在橢圓上是否存在一點
,使得
為鈍角?若存在,求出點
的橫坐標的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)設橢圓的中心是坐標原點,長軸在x軸上,離心率e=,已知點P(0,
)到這個橢圓上的點的最遠距離是
,求這個橢圓的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知點是圓
上任意一點,點
與點
關(guān)于原點對稱。線段
的中垂線
分別與
交于
兩點.
(1)求點的軌跡
的方程;
(2)斜率為的直線
與曲線
交于
兩點,若
(
為坐標原點),試求直線
在
軸
上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知橢圓過點A(a,0),B(0,b)的直
線傾斜角為,原點到該直線的距離為
.
(1)求橢圓的方程;
(2)斜率小于零的直線過點D(1,0)與橢圓交于M,N兩點,若求直線MN的方程;
(3)是否存在實數(shù)k,使直線交橢圓于P、Q兩點,以PQ為直徑的圓過點D(1,0)?若存在,求出k的值;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com