日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知?jiǎng)訄A過定點(diǎn),且在軸上截得的弦長為4,記動(dòng)圓圓心的軌跡為曲線C

          (Ⅰ)求直線與曲線C圍成的區(qū)域面積;

          (Ⅱ)點(diǎn)在直線上,點(diǎn),過點(diǎn)作曲線C的切線、,切點(diǎn)分別為、,證明:存在常數(shù),使得,并求的值.

          【答案】(Ⅰ) (Ⅱ)1

          【解析】試題分析:可出設(shè)動(dòng)圓圓心的坐標(biāo)為,根據(jù)題設(shè)用直接法可得曲線方程;(Ⅰ)直線方程和曲線方程聯(lián)立求交點(diǎn)坐標(biāo),根據(jù)定積分求曲邊形面積可得結(jié)果;(Ⅱ)設(shè), ,根據(jù)導(dǎo)數(shù)求切線斜率,設(shè)切線方程,由韋達(dá)定理、 ,表示可得 .

          試題解析:(Ⅰ)設(shè)動(dòng)圓圓心的坐標(biāo)為,由題意可得, ,化簡得, 聯(lián)立方程組,解得,所以直線與曲線C圍成的區(qū)域面積為;

          (Ⅱ)設(shè),則由題意可得,切線的方程為,切線的方程為,再設(shè)點(diǎn),從而有,所以可得出直線AB的方程為,即

          聯(lián)立方程組,得,又,所以有,

          可得

          ,

          所以常數(shù)

          【方法點(diǎn)晴】本題主要考查拋物線標(biāo)準(zhǔn)方程、定積分的應(yīng)用以及解析幾何中的存在性問題,屬于難題.解決存在性問題,先假設(shè)存在,推證滿足條件的結(jié)論,若結(jié)論正確則存在,若結(jié)論不正確則不存在,注意:①當(dāng)條件和結(jié)論不唯一時(shí)要分類討論;②當(dāng)給出結(jié)論而要推導(dǎo)出存在的條件時(shí),先假設(shè)成立,再推出條件;③當(dāng)條件和結(jié)論都不知,按常規(guī)方法題很難時(shí)采取另外的途徑.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知是圓上任意一點(diǎn),點(diǎn)的坐標(biāo)為,直線分別與線段交于兩點(diǎn),且.

          1)求點(diǎn)的軌跡的方程;

          2)直線與軌跡相交于兩點(diǎn),設(shè)為坐標(biāo)原點(diǎn), ,判斷的面積是否為定值?若是,求出定值,若不是,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如下圖,三棱柱中,側(cè)面 底面 ,且,O中點(diǎn).

          (Ⅰ)證明: 平面;

          (Ⅱ)求直線與平面所成角的正弦;

          (Ⅲ)在上是否存在一點(diǎn),使得平面,若不存在,說明理由;若存在,確定點(diǎn)的位置.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C的方程為=1,A、B為橢圓C的左、右頂點(diǎn),P為橢圓C上不同于A、B的動(dòng)點(diǎn),直線x=4與直線PA、PB分別交于M、N兩點(diǎn);若D(7,0),則過D、M、N三點(diǎn)的圓必過x軸上不同于點(diǎn)D的定點(diǎn),其坐標(biāo)為________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) (a>0且a≠1)是定義在R上的奇函數(shù). (Ⅰ) 求實(shí)數(shù)a的值;
          (Ⅱ) 證明函數(shù)f(x)在R上是增函數(shù);
          (Ⅲ)當(dāng)x∈[1,+∞)時(shí),mf(x)≤2x﹣2恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 ()的焦距為4,左、右焦點(diǎn)分別為,且 與拋物線 的交點(diǎn)所在的直線經(jīng)過.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)過 的直線 交于兩點(diǎn),與拋物線無公共點(diǎn),求的面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P為DD1的中點(diǎn).
          (1)求證:直線BD1∥平面PAC;
          (2)求證:直線PB1⊥平面PAC.
          (3)求三棱錐B﹣PAC的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為曲線的參數(shù)方程是為參數(shù)).

          (1)求直線和曲線的普通方程;

          (2)設(shè)直線和曲線交于兩點(diǎn),求

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1=2Sn+1(n∈N*),等差數(shù)列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比數(shù)列.

          (1)求數(shù)列{an}、{bn}的通項(xiàng)公式;

          (2)求數(shù)列{an·bn}的前n項(xiàng)和Tn.

          查看答案和解析>>

          同步練習(xí)冊答案